Loading…

Synthesis and characterization of electrochemically grown CdSe nanowires with enhanced photoconductivity

CdSe nanowires were grown in polycarbonate track etched membrane with pore diameter of 80 nm by an electrochemical deposition technique. The mechanism of the growth was studied during the potentiostatic deposition of nanowires. X-ray photoelectron spectroscopy and energy dispersive spectrometry resu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2015-03, Vol.26 (3), p.1395-1402
Main Authors: Kalhori, H., Irajizad, A., Azarian, A., Ashiri, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CdSe nanowires were grown in polycarbonate track etched membrane with pore diameter of 80 nm by an electrochemical deposition technique. The mechanism of the growth was studied during the potentiostatic deposition of nanowires. X-ray photoelectron spectroscopy and energy dispersive spectrometry results showed binding of fragments and fraction of atoms for the CdSe nanowires. Microstructure and morphology of synthesized CdSe nanowires were observed by scanning electron microscopy. Optical spectrophotometry technique was used to determine the energy band gap of CdSe nanowires. It was found that the nanowires were resistive in the dark and exhibited a pronounced visible light photoconductivity. Photoconductivity of CdSe nanowire-based nanodevice (an integrated multilayer nanodevice of Cu/CdSe nanowire array/Au thin films) was investigated which indicated an enhanced photoconductive response in contrast to the previously reported results. The photosensitivity of this multilayer nanodevice was found to be about 110, which this sensitivity is one order of magnitude greater than that reported in similar works.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-014-2553-3