Loading…
In situ synthesis and electrophoretic deposition of CNT–ZnS:Mn luminescent nanocomposites
Intertwined composites of carbon nanotubes (CNTs)–manganese doped zinc sulfide (ZnS:Mn) was prepared by precipitating ZnS:Mn nanoparticles on the CNTs surface followed by electrophoretic deposition on Al substrates. Proper distribution of zinc sulfide nanoparticles on the CNTs surface was obtained v...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2015-03, Vol.26 (3), p.1403-1412 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intertwined composites of carbon nanotubes (CNTs)–manganese doped zinc sulfide (ZnS:Mn) was prepared by precipitating ZnS:Mn nanoparticles on the CNTs surface followed by electrophoretic deposition on Al substrates. Proper distribution of zinc sulfide nanoparticles on the CNTs surface was obtained via its surface modification by polyvinylpyrrolidone (PVP) and ethylene glycol (EG). The results revealed that cubic zinc sulfide was formed in the deposited nanocomposites. Transmission electron microscope (TEM) showed deagglomeration of ZnS nanoparticles on the CNTs surface in the presence of EG and PVP. Moreover, electrophoretic (EPD) characteristics (i.e. weight deposition, current density and deposition rate) and photoluminescence (PL) measurements confirmed the significant effect of EG and PVP on different properties of CNT–ZnS:Mn nanocomposites. Optimum concentration of PVP was 25 wt% of CNTs, while 50 ml EG showed better EPD and PL properties. The sample containing 25 wt% PVP represented the best coating quality but the highest PL intensities were obtained for the sample synthesized in the presence of 40 ml EG. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-014-2554-2 |