Loading…
Size effect of nickel oxide for lithium ion battery anode
In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The high...
Saved in:
Published in: | Journal of power sources 2014-05, Vol.253, p.27-34 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3 |
container_end_page | 34 |
container_issue | |
container_start_page | 27 |
container_title | Journal of power sources |
container_volume | 253 |
creator | Cheng, Ming-Yao Ye, Yun-Sheng Chiu, Tse-Ming Pan, Chun-Jen Hwang, Bing-Joe |
description | In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The higher energy efficiency is resulted from the reduction of the hysteresis loop between charge and discharge voltage plateaus, the main drawback of conversion reaction-based metal oxide anode materials. The interesting behavior is proposed to be the reversible formation/dissolution of solid electrolyte interphase (SEI) layers associated with 3-D porous, originally nanostructured NiO electrode that is able to remain stable during charge–discharge process.
•The originally NiO nanostructured electrode is able to reduce the voltage hysteresis loop.•The 3-D porous nanostructure of NiO remains stable during charge discharge process.•The I–V characteristic indicates the high redox reaction kinetics.•The anomalous high capacity is contributed by the reversible SEI layer.•The charge discharge energy efficiency can be much improved. |
doi_str_mv | 10.1016/j.jpowsour.2013.12.037 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677953976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313020053</els_id><sourcerecordid>1540232442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVpodskX6HoUujFjkaWLOnWEvIPAjk0OQtZGlFtvdZW8jZNP328bJprchoYfu-9YR4hn4G1wKA_XbfrbX6oeVdazqBrgbesU-_ICrTqGq6kfE9Wy0Y3SsnuI_lU65oxBqDYipgf6R9SjBH9THOkU_K_cKT5bwpIYy50TPPPtNvQlCc6uHnG8kjdlAMekw_RjRVPnucRub84vzu7am5uL6_Pvt80Xmg-N9Fxr41getC98QIcCMmlD13E4HnwBoXHAcwQuIjK6TAoxgY3QHBmkMJ1R-TrwXdb8u8d1tluUvU4jm7CvKsWeqWM7IzqX0elYLzjQvA3oIuv0Ab0gvYH1Jdca8FotyVtXHm0wOy-Abu2_xuw-wYscLv8exF-ec5w1bsxFjf5VF_UXHPJNOxv-XbgcHnjn4TFVp9w8hhSWWqxIafXop4Aev6fUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516748918</pqid></control><display><type>article</type><title>Size effect of nickel oxide for lithium ion battery anode</title><source>ScienceDirect Freedom Collection</source><creator>Cheng, Ming-Yao ; Ye, Yun-Sheng ; Chiu, Tse-Ming ; Pan, Chun-Jen ; Hwang, Bing-Joe</creator><creatorcontrib>Cheng, Ming-Yao ; Ye, Yun-Sheng ; Chiu, Tse-Ming ; Pan, Chun-Jen ; Hwang, Bing-Joe</creatorcontrib><description>In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The higher energy efficiency is resulted from the reduction of the hysteresis loop between charge and discharge voltage plateaus, the main drawback of conversion reaction-based metal oxide anode materials. The interesting behavior is proposed to be the reversible formation/dissolution of solid electrolyte interphase (SEI) layers associated with 3-D porous, originally nanostructured NiO electrode that is able to remain stable during charge–discharge process.
•The originally NiO nanostructured electrode is able to reduce the voltage hysteresis loop.•The 3-D porous nanostructure of NiO remains stable during charge discharge process.•The I–V characteristic indicates the high redox reaction kinetics.•The anomalous high capacity is contributed by the reversible SEI layer.•The charge discharge energy efficiency can be much improved.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.12.037</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anode ; Anode effect ; Applied sciences ; Charge ; Conversion reaction ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Energy management ; Exact sciences and technology ; Lithium ion battery ; Lithium-ion batteries ; Materials ; Nanostructure ; Nickel oxide ; Reduction (electrolytic) ; Size effect ; Three dimensional</subject><ispartof>Journal of power sources, 2014-05, Vol.253, p.27-34</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3</citedby><cites>FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28250812$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Ming-Yao</creatorcontrib><creatorcontrib>Ye, Yun-Sheng</creatorcontrib><creatorcontrib>Chiu, Tse-Ming</creatorcontrib><creatorcontrib>Pan, Chun-Jen</creatorcontrib><creatorcontrib>Hwang, Bing-Joe</creatorcontrib><title>Size effect of nickel oxide for lithium ion battery anode</title><title>Journal of power sources</title><description>In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The higher energy efficiency is resulted from the reduction of the hysteresis loop between charge and discharge voltage plateaus, the main drawback of conversion reaction-based metal oxide anode materials. The interesting behavior is proposed to be the reversible formation/dissolution of solid electrolyte interphase (SEI) layers associated with 3-D porous, originally nanostructured NiO electrode that is able to remain stable during charge–discharge process.
•The originally NiO nanostructured electrode is able to reduce the voltage hysteresis loop.•The 3-D porous nanostructure of NiO remains stable during charge discharge process.•The I–V characteristic indicates the high redox reaction kinetics.•The anomalous high capacity is contributed by the reversible SEI layer.•The charge discharge energy efficiency can be much improved.</description><subject>Anode</subject><subject>Anode effect</subject><subject>Applied sciences</subject><subject>Charge</subject><subject>Conversion reaction</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Energy management</subject><subject>Exact sciences and technology</subject><subject>Lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Materials</subject><subject>Nanostructure</subject><subject>Nickel oxide</subject><subject>Reduction (electrolytic)</subject><subject>Size effect</subject><subject>Three dimensional</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAQxUVpodskX6HoUujFjkaWLOnWEvIPAjk0OQtZGlFtvdZW8jZNP328bJprchoYfu-9YR4hn4G1wKA_XbfrbX6oeVdazqBrgbesU-_ICrTqGq6kfE9Wy0Y3SsnuI_lU65oxBqDYipgf6R9SjBH9THOkU_K_cKT5bwpIYy50TPPPtNvQlCc6uHnG8kjdlAMekw_RjRVPnucRub84vzu7am5uL6_Pvt80Xmg-N9Fxr41getC98QIcCMmlD13E4HnwBoXHAcwQuIjK6TAoxgY3QHBmkMJ1R-TrwXdb8u8d1tluUvU4jm7CvKsWeqWM7IzqX0elYLzjQvA3oIuv0Ab0gvYH1Jdca8FotyVtXHm0wOy-Abu2_xuw-wYscLv8exF-ec5w1bsxFjf5VF_UXHPJNOxv-XbgcHnjn4TFVp9w8hhSWWqxIafXop4Aev6fUw</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Cheng, Ming-Yao</creator><creator>Ye, Yun-Sheng</creator><creator>Chiu, Tse-Ming</creator><creator>Pan, Chun-Jen</creator><creator>Hwang, Bing-Joe</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>20140501</creationdate><title>Size effect of nickel oxide for lithium ion battery anode</title><author>Cheng, Ming-Yao ; Ye, Yun-Sheng ; Chiu, Tse-Ming ; Pan, Chun-Jen ; Hwang, Bing-Joe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anode</topic><topic>Anode effect</topic><topic>Applied sciences</topic><topic>Charge</topic><topic>Conversion reaction</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Energy management</topic><topic>Exact sciences and technology</topic><topic>Lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Materials</topic><topic>Nanostructure</topic><topic>Nickel oxide</topic><topic>Reduction (electrolytic)</topic><topic>Size effect</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Ming-Yao</creatorcontrib><creatorcontrib>Ye, Yun-Sheng</creatorcontrib><creatorcontrib>Chiu, Tse-Ming</creatorcontrib><creatorcontrib>Pan, Chun-Jen</creatorcontrib><creatorcontrib>Hwang, Bing-Joe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Ming-Yao</au><au>Ye, Yun-Sheng</au><au>Chiu, Tse-Ming</au><au>Pan, Chun-Jen</au><au>Hwang, Bing-Joe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size effect of nickel oxide for lithium ion battery anode</atitle><jtitle>Journal of power sources</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>253</volume><spage>27</spage><epage>34</epage><pages>27-34</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The higher energy efficiency is resulted from the reduction of the hysteresis loop between charge and discharge voltage plateaus, the main drawback of conversion reaction-based metal oxide anode materials. The interesting behavior is proposed to be the reversible formation/dissolution of solid electrolyte interphase (SEI) layers associated with 3-D porous, originally nanostructured NiO electrode that is able to remain stable during charge–discharge process.
•The originally NiO nanostructured electrode is able to reduce the voltage hysteresis loop.•The 3-D porous nanostructure of NiO remains stable during charge discharge process.•The I–V characteristic indicates the high redox reaction kinetics.•The anomalous high capacity is contributed by the reversible SEI layer.•The charge discharge energy efficiency can be much improved.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.12.037</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-05, Vol.253, p.27-34 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677953976 |
source | ScienceDirect Freedom Collection |
subjects | Anode Anode effect Applied sciences Charge Conversion reaction Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrodes Energy management Exact sciences and technology Lithium ion battery Lithium-ion batteries Materials Nanostructure Nickel oxide Reduction (electrolytic) Size effect Three dimensional |
title | Size effect of nickel oxide for lithium ion battery anode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20effect%20of%20nickel%20oxide%20for%20lithium%20ion%20battery%20anode&rft.jtitle=Journal%20of%20power%20sources&rft.au=Cheng,%20Ming-Yao&rft.date=2014-05-01&rft.volume=253&rft.spage=27&rft.epage=34&rft.pages=27-34&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.12.037&rft_dat=%3Cproquest_cross%3E1540232442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1516748918&rft_id=info:pmid/&rfr_iscdi=true |