Loading…

Size effect of nickel oxide for lithium ion battery anode

In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The high...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2014-05, Vol.253, p.27-34
Main Authors: Cheng, Ming-Yao, Ye, Yun-Sheng, Chiu, Tse-Ming, Pan, Chun-Jen, Hwang, Bing-Joe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3
cites cdi_FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3
container_end_page 34
container_issue
container_start_page 27
container_title Journal of power sources
container_volume 253
creator Cheng, Ming-Yao
Ye, Yun-Sheng
Chiu, Tse-Ming
Pan, Chun-Jen
Hwang, Bing-Joe
description In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The higher energy efficiency is resulted from the reduction of the hysteresis loop between charge and discharge voltage plateaus, the main drawback of conversion reaction-based metal oxide anode materials. The interesting behavior is proposed to be the reversible formation/dissolution of solid electrolyte interphase (SEI) layers associated with 3-D porous, originally nanostructured NiO electrode that is able to remain stable during charge–discharge process. •The originally NiO nanostructured electrode is able to reduce the voltage hysteresis loop.•The 3-D porous nanostructure of NiO remains stable during charge discharge process.•The I–V characteristic indicates the high redox reaction kinetics.•The anomalous high capacity is contributed by the reversible SEI layer.•The charge discharge energy efficiency can be much improved.
doi_str_mv 10.1016/j.jpowsour.2013.12.037
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677953976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313020053</els_id><sourcerecordid>1540232442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVpodskX6HoUujFjkaWLOnWEvIPAjk0OQtZGlFtvdZW8jZNP328bJprchoYfu-9YR4hn4G1wKA_XbfrbX6oeVdazqBrgbesU-_ICrTqGq6kfE9Wy0Y3SsnuI_lU65oxBqDYipgf6R9SjBH9THOkU_K_cKT5bwpIYy50TPPPtNvQlCc6uHnG8kjdlAMekw_RjRVPnucRub84vzu7am5uL6_Pvt80Xmg-N9Fxr41getC98QIcCMmlD13E4HnwBoXHAcwQuIjK6TAoxgY3QHBmkMJ1R-TrwXdb8u8d1tluUvU4jm7CvKsWeqWM7IzqX0elYLzjQvA3oIuv0Ab0gvYH1Jdca8FotyVtXHm0wOy-Abu2_xuw-wYscLv8exF-ec5w1bsxFjf5VF_UXHPJNOxv-XbgcHnjn4TFVp9w8hhSWWqxIafXop4Aev6fUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516748918</pqid></control><display><type>article</type><title>Size effect of nickel oxide for lithium ion battery anode</title><source>ScienceDirect Freedom Collection</source><creator>Cheng, Ming-Yao ; Ye, Yun-Sheng ; Chiu, Tse-Ming ; Pan, Chun-Jen ; Hwang, Bing-Joe</creator><creatorcontrib>Cheng, Ming-Yao ; Ye, Yun-Sheng ; Chiu, Tse-Ming ; Pan, Chun-Jen ; Hwang, Bing-Joe</creatorcontrib><description>In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The higher energy efficiency is resulted from the reduction of the hysteresis loop between charge and discharge voltage plateaus, the main drawback of conversion reaction-based metal oxide anode materials. The interesting behavior is proposed to be the reversible formation/dissolution of solid electrolyte interphase (SEI) layers associated with 3-D porous, originally nanostructured NiO electrode that is able to remain stable during charge–discharge process. •The originally NiO nanostructured electrode is able to reduce the voltage hysteresis loop.•The 3-D porous nanostructure of NiO remains stable during charge discharge process.•The I–V characteristic indicates the high redox reaction kinetics.•The anomalous high capacity is contributed by the reversible SEI layer.•The charge discharge energy efficiency can be much improved.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.12.037</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anode ; Anode effect ; Applied sciences ; Charge ; Conversion reaction ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrodes ; Energy management ; Exact sciences and technology ; Lithium ion battery ; Lithium-ion batteries ; Materials ; Nanostructure ; Nickel oxide ; Reduction (electrolytic) ; Size effect ; Three dimensional</subject><ispartof>Journal of power sources, 2014-05, Vol.253, p.27-34</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3</citedby><cites>FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28250812$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Ming-Yao</creatorcontrib><creatorcontrib>Ye, Yun-Sheng</creatorcontrib><creatorcontrib>Chiu, Tse-Ming</creatorcontrib><creatorcontrib>Pan, Chun-Jen</creatorcontrib><creatorcontrib>Hwang, Bing-Joe</creatorcontrib><title>Size effect of nickel oxide for lithium ion battery anode</title><title>Journal of power sources</title><description>In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The higher energy efficiency is resulted from the reduction of the hysteresis loop between charge and discharge voltage plateaus, the main drawback of conversion reaction-based metal oxide anode materials. The interesting behavior is proposed to be the reversible formation/dissolution of solid electrolyte interphase (SEI) layers associated with 3-D porous, originally nanostructured NiO electrode that is able to remain stable during charge–discharge process. •The originally NiO nanostructured electrode is able to reduce the voltage hysteresis loop.•The 3-D porous nanostructure of NiO remains stable during charge discharge process.•The I–V characteristic indicates the high redox reaction kinetics.•The anomalous high capacity is contributed by the reversible SEI layer.•The charge discharge energy efficiency can be much improved.</description><subject>Anode</subject><subject>Anode effect</subject><subject>Applied sciences</subject><subject>Charge</subject><subject>Conversion reaction</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrodes</subject><subject>Energy management</subject><subject>Exact sciences and technology</subject><subject>Lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Materials</subject><subject>Nanostructure</subject><subject>Nickel oxide</subject><subject>Reduction (electrolytic)</subject><subject>Size effect</subject><subject>Three dimensional</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAQxUVpodskX6HoUujFjkaWLOnWEvIPAjk0OQtZGlFtvdZW8jZNP328bJprchoYfu-9YR4hn4G1wKA_XbfrbX6oeVdazqBrgbesU-_ICrTqGq6kfE9Wy0Y3SsnuI_lU65oxBqDYipgf6R9SjBH9THOkU_K_cKT5bwpIYy50TPPPtNvQlCc6uHnG8kjdlAMekw_RjRVPnucRub84vzu7am5uL6_Pvt80Xmg-N9Fxr41getC98QIcCMmlD13E4HnwBoXHAcwQuIjK6TAoxgY3QHBmkMJ1R-TrwXdb8u8d1tluUvU4jm7CvKsWeqWM7IzqX0elYLzjQvA3oIuv0Ab0gvYH1Jdca8FotyVtXHm0wOy-Abu2_xuw-wYscLv8exF-ec5w1bsxFjf5VF_UXHPJNOxv-XbgcHnjn4TFVp9w8hhSWWqxIafXop4Aev6fUw</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Cheng, Ming-Yao</creator><creator>Ye, Yun-Sheng</creator><creator>Chiu, Tse-Ming</creator><creator>Pan, Chun-Jen</creator><creator>Hwang, Bing-Joe</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>20140501</creationdate><title>Size effect of nickel oxide for lithium ion battery anode</title><author>Cheng, Ming-Yao ; Ye, Yun-Sheng ; Chiu, Tse-Ming ; Pan, Chun-Jen ; Hwang, Bing-Joe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anode</topic><topic>Anode effect</topic><topic>Applied sciences</topic><topic>Charge</topic><topic>Conversion reaction</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrodes</topic><topic>Energy management</topic><topic>Exact sciences and technology</topic><topic>Lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Materials</topic><topic>Nanostructure</topic><topic>Nickel oxide</topic><topic>Reduction (electrolytic)</topic><topic>Size effect</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Ming-Yao</creatorcontrib><creatorcontrib>Ye, Yun-Sheng</creatorcontrib><creatorcontrib>Chiu, Tse-Ming</creatorcontrib><creatorcontrib>Pan, Chun-Jen</creatorcontrib><creatorcontrib>Hwang, Bing-Joe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Ming-Yao</au><au>Ye, Yun-Sheng</au><au>Chiu, Tse-Ming</au><au>Pan, Chun-Jen</au><au>Hwang, Bing-Joe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size effect of nickel oxide for lithium ion battery anode</atitle><jtitle>Journal of power sources</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>253</volume><spage>27</spage><epage>34</epage><pages>27-34</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>In this study, size effect of NiO particles has been studied as the anode material of lithium ion battery. It is found that NiO nanoparticles synthesized in confined space of ordered mesoporous silica behave anomalous high capacity and higher energy efficiency than sub-micro-sized NiO does. The higher energy efficiency is resulted from the reduction of the hysteresis loop between charge and discharge voltage plateaus, the main drawback of conversion reaction-based metal oxide anode materials. The interesting behavior is proposed to be the reversible formation/dissolution of solid electrolyte interphase (SEI) layers associated with 3-D porous, originally nanostructured NiO electrode that is able to remain stable during charge–discharge process. •The originally NiO nanostructured electrode is able to reduce the voltage hysteresis loop.•The 3-D porous nanostructure of NiO remains stable during charge discharge process.•The I–V characteristic indicates the high redox reaction kinetics.•The anomalous high capacity is contributed by the reversible SEI layer.•The charge discharge energy efficiency can be much improved.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.12.037</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-05, Vol.253, p.27-34
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1677953976
source ScienceDirect Freedom Collection
subjects Anode
Anode effect
Applied sciences
Charge
Conversion reaction
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrodes
Energy management
Exact sciences and technology
Lithium ion battery
Lithium-ion batteries
Materials
Nanostructure
Nickel oxide
Reduction (electrolytic)
Size effect
Three dimensional
title Size effect of nickel oxide for lithium ion battery anode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20effect%20of%20nickel%20oxide%20for%20lithium%20ion%20battery%20anode&rft.jtitle=Journal%20of%20power%20sources&rft.au=Cheng,%20Ming-Yao&rft.date=2014-05-01&rft.volume=253&rft.spage=27&rft.epage=34&rft.pages=27-34&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.12.037&rft_dat=%3Cproquest_cross%3E1540232442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-fa2c89408b869c41a14525cd3fedc2dc9e4ceb19bd24f7a8db700bab1da9b54a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1516748918&rft_id=info:pmid/&rfr_iscdi=true