Loading…

Simulation of precipitate evolution in Fe–25 Co– 15 Mo with Si addition based on computational thermodynamics

•The nucleus composition of metastable bcc-precipitates is modeled.•Enthalpies of bcc are calculated using special quasirandom structures.•Thermodynamic model parameters of intermetallic μ-phase are optimized.•The precipitate evolution in Fe–Co–Mo alloy during aging is simulated.•Elastic strain is c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2014-02, Vol.587, p.158-170
Main Authors: Povoden-Karadeniz, E., Eidenberger, E., Lang, P., Stechauner, G., Leitner, H., Kozeschnik, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-98deff1445ddef587422df5dda2f752f040a448559c4a1c71f3ab4f77abda5d73
cites cdi_FETCH-LOGICAL-c438t-98deff1445ddef587422df5dda2f752f040a448559c4a1c71f3ab4f77abda5d73
container_end_page 170
container_issue
container_start_page 158
container_title Journal of alloys and compounds
container_volume 587
creator Povoden-Karadeniz, E.
Eidenberger, E.
Lang, P.
Stechauner, G.
Leitner, H.
Kozeschnik, E.
description •The nucleus composition of metastable bcc-precipitates is modeled.•Enthalpies of bcc are calculated using special quasirandom structures.•Thermodynamic model parameters of intermetallic μ-phase are optimized.•The precipitate evolution in Fe–Co–Mo alloy during aging is simulated.•Elastic strain is considered in the precipitation simulation. Multi-component nucleation theory is applied to decipher the precipitate evolution of solution-treated and quenched Fe–25Co–15Mo (mass%) with Si addition during continuous heating and isothermal aging. For computer simulation of the nucleation and growth kinetics of precipitates, we optimize thermodynamic model parameters of the Fe–Co–Mo system with experimental data and enthalpies of formation of ternary ferrite phase determined by density functional theory analysis. Si-solubility in the precipitation-hardening μ-phase is considered in the thermodynamic modeling. The body-centered cubic (bcc) ferrite phase reveals a metastable miscibility gap between Fe- and Mo-rich phase below 1033K. Based on thermodynamic modeling of the Fe–Co–Mo system, it is shown that the alloy Fe–25Co–15Mo is located outside the spinodal region, which is in contrast to some previous work on this system. Thermo-kinetic simulations, which are validated on experimental data from atom probe tomography, propose that during aging, the first microstructures form by means of nucleation and growth of metastable bcc-precipitates before the formation of rhombohedral μ-phase. For the thermokinetic analysis, we evaluate and utilize theoretically predicted nucleus compositions of bcc-precipitates from the minimum nucleation barrier concept.
doi_str_mv 10.1016/j.jallcom.2013.10.166
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677957277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838813025929</els_id><sourcerecordid>1677957277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-98deff1445ddef587422df5dda2f752f040a448559c4a1c71f3ab4f77abda5d73</originalsourceid><addsrcrecordid>eNqNkcluFDEQhi0EEkPIIyD5gsSlB-92nxAakQQpiEPI2arxonjU3e60u4Ny4x3yhjwJnkVck1NtXy2qH6EPlKwpoerzbr2DrnO5XzNC-XqfVuoVWlGjeSOUal-jFWmZbAw35i16V8qOEEJbTlfo_ib1SwdzygPOEY9TcGlMM8wBh4fcLYdCGvBF-PvniUm8ydViKvGPjH-n-Q7fJAzepwO3hRI8rk69ZVzmw1To8HwXpj77xwH65Mp79CZCV8L5yZ6h24tvvzZXzfXPy--br9eNE9zMTWt8iJEKIX11pNGCMR9rACxqySIRBIQwUrZOAHWaRg5bEbWGrQfpNT9Dn45zxynfL6HMtk_Fha6DIeSlWKq0bqVm-gWolJQoSsVLUF41MVyZisoj6qZcyhSiHafUw_RoKbF74ezOnoSze-EOaaVq38fTCigOujjB4FL538wMU_UX-1O-HLlQv_iQwmSLS2Fwwaeq4mx9Ts9s-gffurMX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531018368</pqid></control><display><type>article</type><title>Simulation of precipitate evolution in Fe–25 Co– 15 Mo with Si addition based on computational thermodynamics</title><source>ScienceDirect Freedom Collection</source><creator>Povoden-Karadeniz, E. ; Eidenberger, E. ; Lang, P. ; Stechauner, G. ; Leitner, H. ; Kozeschnik, E.</creator><creatorcontrib>Povoden-Karadeniz, E. ; Eidenberger, E. ; Lang, P. ; Stechauner, G. ; Leitner, H. ; Kozeschnik, E.</creatorcontrib><description>•The nucleus composition of metastable bcc-precipitates is modeled.•Enthalpies of bcc are calculated using special quasirandom structures.•Thermodynamic model parameters of intermetallic μ-phase are optimized.•The precipitate evolution in Fe–Co–Mo alloy during aging is simulated.•Elastic strain is considered in the precipitation simulation. Multi-component nucleation theory is applied to decipher the precipitate evolution of solution-treated and quenched Fe–25Co–15Mo (mass%) with Si addition during continuous heating and isothermal aging. For computer simulation of the nucleation and growth kinetics of precipitates, we optimize thermodynamic model parameters of the Fe–Co–Mo system with experimental data and enthalpies of formation of ternary ferrite phase determined by density functional theory analysis. Si-solubility in the precipitation-hardening μ-phase is considered in the thermodynamic modeling. The body-centered cubic (bcc) ferrite phase reveals a metastable miscibility gap between Fe- and Mo-rich phase below 1033K. Based on thermodynamic modeling of the Fe–Co–Mo system, it is shown that the alloy Fe–25Co–15Mo is located outside the spinodal region, which is in contrast to some previous work on this system. Thermo-kinetic simulations, which are validated on experimental data from atom probe tomography, propose that during aging, the first microstructures form by means of nucleation and growth of metastable bcc-precipitates before the formation of rhombohedral μ-phase. For the thermokinetic analysis, we evaluate and utilize theoretically predicted nucleus compositions of bcc-precipitates from the minimum nucleation barrier concept.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2013.10.166</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Alloys ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Ferrous alloys ; Fe–Co–Mo ; Iron ; Materials science ; Metastable ; Nucleation ; Nuclei ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitates ; Precipitation ; Spinodal ; Thermodynamics ; Transformation ; μ-Phase</subject><ispartof>Journal of alloys and compounds, 2014-02, Vol.587, p.158-170</ispartof><rights>2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-98deff1445ddef587422df5dda2f752f040a448559c4a1c71f3ab4f77abda5d73</citedby><cites>FETCH-LOGICAL-c438t-98deff1445ddef587422df5dda2f752f040a448559c4a1c71f3ab4f77abda5d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28264227$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Povoden-Karadeniz, E.</creatorcontrib><creatorcontrib>Eidenberger, E.</creatorcontrib><creatorcontrib>Lang, P.</creatorcontrib><creatorcontrib>Stechauner, G.</creatorcontrib><creatorcontrib>Leitner, H.</creatorcontrib><creatorcontrib>Kozeschnik, E.</creatorcontrib><title>Simulation of precipitate evolution in Fe–25 Co– 15 Mo with Si addition based on computational thermodynamics</title><title>Journal of alloys and compounds</title><description>•The nucleus composition of metastable bcc-precipitates is modeled.•Enthalpies of bcc are calculated using special quasirandom structures.•Thermodynamic model parameters of intermetallic μ-phase are optimized.•The precipitate evolution in Fe–Co–Mo alloy during aging is simulated.•Elastic strain is considered in the precipitation simulation. Multi-component nucleation theory is applied to decipher the precipitate evolution of solution-treated and quenched Fe–25Co–15Mo (mass%) with Si addition during continuous heating and isothermal aging. For computer simulation of the nucleation and growth kinetics of precipitates, we optimize thermodynamic model parameters of the Fe–Co–Mo system with experimental data and enthalpies of formation of ternary ferrite phase determined by density functional theory analysis. Si-solubility in the precipitation-hardening μ-phase is considered in the thermodynamic modeling. The body-centered cubic (bcc) ferrite phase reveals a metastable miscibility gap between Fe- and Mo-rich phase below 1033K. Based on thermodynamic modeling of the Fe–Co–Mo system, it is shown that the alloy Fe–25Co–15Mo is located outside the spinodal region, which is in contrast to some previous work on this system. Thermo-kinetic simulations, which are validated on experimental data from atom probe tomography, propose that during aging, the first microstructures form by means of nucleation and growth of metastable bcc-precipitates before the formation of rhombohedral μ-phase. For the thermokinetic analysis, we evaluate and utilize theoretically predicted nucleus compositions of bcc-precipitates from the minimum nucleation barrier concept.</description><subject>Alloys</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Ferrous alloys</subject><subject>Fe–Co–Mo</subject><subject>Iron</subject><subject>Materials science</subject><subject>Metastable</subject><subject>Nucleation</subject><subject>Nuclei</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Spinodal</subject><subject>Thermodynamics</subject><subject>Transformation</subject><subject>μ-Phase</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcluFDEQhi0EEkPIIyD5gsSlB-92nxAakQQpiEPI2arxonjU3e60u4Ny4x3yhjwJnkVck1NtXy2qH6EPlKwpoerzbr2DrnO5XzNC-XqfVuoVWlGjeSOUal-jFWmZbAw35i16V8qOEEJbTlfo_ib1SwdzygPOEY9TcGlMM8wBh4fcLYdCGvBF-PvniUm8ydViKvGPjH-n-Q7fJAzepwO3hRI8rk69ZVzmw1To8HwXpj77xwH65Mp79CZCV8L5yZ6h24tvvzZXzfXPy--br9eNE9zMTWt8iJEKIX11pNGCMR9rACxqySIRBIQwUrZOAHWaRg5bEbWGrQfpNT9Dn45zxynfL6HMtk_Fha6DIeSlWKq0bqVm-gWolJQoSsVLUF41MVyZisoj6qZcyhSiHafUw_RoKbF74ezOnoSze-EOaaVq38fTCigOujjB4FL538wMU_UX-1O-HLlQv_iQwmSLS2Fwwaeq4mx9Ts9s-gffurMX</recordid><startdate>20140225</startdate><enddate>20140225</enddate><creator>Povoden-Karadeniz, E.</creator><creator>Eidenberger, E.</creator><creator>Lang, P.</creator><creator>Stechauner, G.</creator><creator>Leitner, H.</creator><creator>Kozeschnik, E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140225</creationdate><title>Simulation of precipitate evolution in Fe–25 Co– 15 Mo with Si addition based on computational thermodynamics</title><author>Povoden-Karadeniz, E. ; Eidenberger, E. ; Lang, P. ; Stechauner, G. ; Leitner, H. ; Kozeschnik, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-98deff1445ddef587422df5dda2f752f040a448559c4a1c71f3ab4f77abda5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloys</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Ferrous alloys</topic><topic>Fe–Co–Mo</topic><topic>Iron</topic><topic>Materials science</topic><topic>Metastable</topic><topic>Nucleation</topic><topic>Nuclei</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Spinodal</topic><topic>Thermodynamics</topic><topic>Transformation</topic><topic>μ-Phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Povoden-Karadeniz, E.</creatorcontrib><creatorcontrib>Eidenberger, E.</creatorcontrib><creatorcontrib>Lang, P.</creatorcontrib><creatorcontrib>Stechauner, G.</creatorcontrib><creatorcontrib>Leitner, H.</creatorcontrib><creatorcontrib>Kozeschnik, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Povoden-Karadeniz, E.</au><au>Eidenberger, E.</au><au>Lang, P.</au><au>Stechauner, G.</au><au>Leitner, H.</au><au>Kozeschnik, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of precipitate evolution in Fe–25 Co– 15 Mo with Si addition based on computational thermodynamics</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2014-02-25</date><risdate>2014</risdate><volume>587</volume><spage>158</spage><epage>170</epage><pages>158-170</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•The nucleus composition of metastable bcc-precipitates is modeled.•Enthalpies of bcc are calculated using special quasirandom structures.•Thermodynamic model parameters of intermetallic μ-phase are optimized.•The precipitate evolution in Fe–Co–Mo alloy during aging is simulated.•Elastic strain is considered in the precipitation simulation. Multi-component nucleation theory is applied to decipher the precipitate evolution of solution-treated and quenched Fe–25Co–15Mo (mass%) with Si addition during continuous heating and isothermal aging. For computer simulation of the nucleation and growth kinetics of precipitates, we optimize thermodynamic model parameters of the Fe–Co–Mo system with experimental data and enthalpies of formation of ternary ferrite phase determined by density functional theory analysis. Si-solubility in the precipitation-hardening μ-phase is considered in the thermodynamic modeling. The body-centered cubic (bcc) ferrite phase reveals a metastable miscibility gap between Fe- and Mo-rich phase below 1033K. Based on thermodynamic modeling of the Fe–Co–Mo system, it is shown that the alloy Fe–25Co–15Mo is located outside the spinodal region, which is in contrast to some previous work on this system. Thermo-kinetic simulations, which are validated on experimental data from atom probe tomography, propose that during aging, the first microstructures form by means of nucleation and growth of metastable bcc-precipitates before the formation of rhombohedral μ-phase. For the thermokinetic analysis, we evaluate and utilize theoretically predicted nucleus compositions of bcc-precipitates from the minimum nucleation barrier concept.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2013.10.166</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2014-02, Vol.587, p.158-170
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_1677957277
source ScienceDirect Freedom Collection
subjects Alloys
Computer simulation
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Ferrous alloys
Fe–Co–Mo
Iron
Materials science
Metastable
Nucleation
Nuclei
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Precipitates
Precipitation
Spinodal
Thermodynamics
Transformation
μ-Phase
title Simulation of precipitate evolution in Fe–25 Co– 15 Mo with Si addition based on computational thermodynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20precipitate%20evolution%20in%20Fe%E2%80%9325%20Co%E2%80%93%2015%20Mo%20with%20Si%20addition%20based%20on%20computational%20thermodynamics&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Povoden-Karadeniz,%20E.&rft.date=2014-02-25&rft.volume=587&rft.spage=158&rft.epage=170&rft.pages=158-170&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2013.10.166&rft_dat=%3Cproquest_cross%3E1677957277%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-98deff1445ddef587422df5dda2f752f040a448559c4a1c71f3ab4f77abda5d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531018368&rft_id=info:pmid/&rfr_iscdi=true