Loading…
Atomistic study of the influence of lattice defects on the thermal conductivity of silicon
Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity o...
Saved in:
Published in: | Modelling and simulation in materials science and engineering 2014-04, Vol.22 (3), p.35011-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393 |
container_end_page | 14 |
container_issue | 3 |
container_start_page | 35011 |
container_title | Modelling and simulation in materials science and engineering |
container_volume | 22 |
creator | Wang, T Madsen, G K H Hartmaier, A |
description | Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity of silicon. The results show a clear non-linear decrease of the thermal conductivity with increasing defect volume fraction. Furthermore, it is found that for a given volume fraction of defects, a random distribution shows a lower lattice thermal conductivity. To develop a fundamental understanding of these observations, the spectral energy densities for all phonon branches obtained from 2D Fourier transformations of the atomic trajectories are analyzed. This yields the mean phonon group velocities and relaxation times, which are the main physical quantities contributing to the lattice thermal conductivity. Our analysis reveals that the phonon relaxation time is the most important parameter for describing the degrading of the thermal transport behavior in the defected structures. |
doi_str_mv | 10.1088/0965-0393/22/3/035011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677958894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677958894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-BKFHPdTmJZumPS6L_2DBi4J4CWmaYJa2qU0q7Lc33Yp4EA-PB8NvBmYQugR8A7goMlzmLMW0pBkhGc0wZRjgCC2A5pDmDF6P0eKHOUVn3u8wxqwgfIHe1sG11gerEh_Gep84k4R3ndjONKPulJ6ERoYI6KTWRqvgE9cdmHhDK5tEua4eVbCfNhz83jY2aufoxMjG64vvv0Qvd7fPm4d0-3T_uFlvU0VzElLOqwpWwBWsqjLHknJVMFVAYTQjAFoCJrmWsqKMVYpiow03ZVGuVEUUj42W6GrO7Qf3MWofRCykdNPITrvRC8g5L1kRHRFlM6oG5_2gjegH28phLwCLaUsx7SSmnQQhgop5y-i7nn3W9WLnxqGLhUTrW69_c6KvTWThD_b__C9SJISG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677958894</pqid></control><display><type>article</type><title>Atomistic study of the influence of lattice defects on the thermal conductivity of silicon</title><source>Institute of Physics</source><creator>Wang, T ; Madsen, G K H ; Hartmaier, A</creator><creatorcontrib>Wang, T ; Madsen, G K H ; Hartmaier, A</creatorcontrib><description>Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity of silicon. The results show a clear non-linear decrease of the thermal conductivity with increasing defect volume fraction. Furthermore, it is found that for a given volume fraction of defects, a random distribution shows a lower lattice thermal conductivity. To develop a fundamental understanding of these observations, the spectral energy densities for all phonon branches obtained from 2D Fourier transformations of the atomic trajectories are analyzed. This yields the mean phonon group velocities and relaxation times, which are the main physical quantities contributing to the lattice thermal conductivity. Our analysis reveals that the phonon relaxation time is the most important parameter for describing the degrading of the thermal transport behavior in the defected structures.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/0965-0393/22/3/035011</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Computer simulation ; Crystal defects ; defects ; density of state ; Fourier transformation ; Heat transfer ; Lattice vacancies ; Lattices ; Phonons ; Relaxation time ; Thermal conductivity</subject><ispartof>Modelling and simulation in materials science and engineering, 2014-04, Vol.22 (3), p.35011-14</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393</citedby><cites>FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, T</creatorcontrib><creatorcontrib>Madsen, G K H</creatorcontrib><creatorcontrib>Hartmaier, A</creatorcontrib><title>Atomistic study of the influence of lattice defects on the thermal conductivity of silicon</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMSE</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity of silicon. The results show a clear non-linear decrease of the thermal conductivity with increasing defect volume fraction. Furthermore, it is found that for a given volume fraction of defects, a random distribution shows a lower lattice thermal conductivity. To develop a fundamental understanding of these observations, the spectral energy densities for all phonon branches obtained from 2D Fourier transformations of the atomic trajectories are analyzed. This yields the mean phonon group velocities and relaxation times, which are the main physical quantities contributing to the lattice thermal conductivity. Our analysis reveals that the phonon relaxation time is the most important parameter for describing the degrading of the thermal transport behavior in the defected structures.</description><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>defects</subject><subject>density of state</subject><subject>Fourier transformation</subject><subject>Heat transfer</subject><subject>Lattice vacancies</subject><subject>Lattices</subject><subject>Phonons</subject><subject>Relaxation time</subject><subject>Thermal conductivity</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-BKFHPdTmJZumPS6L_2DBi4J4CWmaYJa2qU0q7Lc33Yp4EA-PB8NvBmYQugR8A7goMlzmLMW0pBkhGc0wZRjgCC2A5pDmDF6P0eKHOUVn3u8wxqwgfIHe1sG11gerEh_Gep84k4R3ndjONKPulJ6ERoYI6KTWRqvgE9cdmHhDK5tEua4eVbCfNhz83jY2aufoxMjG64vvv0Qvd7fPm4d0-3T_uFlvU0VzElLOqwpWwBWsqjLHknJVMFVAYTQjAFoCJrmWsqKMVYpiow03ZVGuVEUUj42W6GrO7Qf3MWofRCykdNPITrvRC8g5L1kRHRFlM6oG5_2gjegH28phLwCLaUsx7SSmnQQhgop5y-i7nn3W9WLnxqGLhUTrW69_c6KvTWThD_b__C9SJISG</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Wang, T</creator><creator>Madsen, G K H</creator><creator>Hartmaier, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Atomistic study of the influence of lattice defects on the thermal conductivity of silicon</title><author>Wang, T ; Madsen, G K H ; Hartmaier, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>defects</topic><topic>density of state</topic><topic>Fourier transformation</topic><topic>Heat transfer</topic><topic>Lattice vacancies</topic><topic>Lattices</topic><topic>Phonons</topic><topic>Relaxation time</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, T</creatorcontrib><creatorcontrib>Madsen, G K H</creatorcontrib><creatorcontrib>Hartmaier, A</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, T</au><au>Madsen, G K H</au><au>Hartmaier, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic study of the influence of lattice defects on the thermal conductivity of silicon</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMSE</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>22</volume><issue>3</issue><spage>35011</spage><epage>14</epage><pages>35011-14</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity of silicon. The results show a clear non-linear decrease of the thermal conductivity with increasing defect volume fraction. Furthermore, it is found that for a given volume fraction of defects, a random distribution shows a lower lattice thermal conductivity. To develop a fundamental understanding of these observations, the spectral energy densities for all phonon branches obtained from 2D Fourier transformations of the atomic trajectories are analyzed. This yields the mean phonon group velocities and relaxation times, which are the main physical quantities contributing to the lattice thermal conductivity. Our analysis reveals that the phonon relaxation time is the most important parameter for describing the degrading of the thermal transport behavior in the defected structures.</abstract><pub>IOP Publishing</pub><doi>10.1088/0965-0393/22/3/035011</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-0393 |
ispartof | Modelling and simulation in materials science and engineering, 2014-04, Vol.22 (3), p.35011-14 |
issn | 0965-0393 1361-651X |
language | eng |
recordid | cdi_proquest_miscellaneous_1677958894 |
source | Institute of Physics |
subjects | Computer simulation Crystal defects defects density of state Fourier transformation Heat transfer Lattice vacancies Lattices Phonons Relaxation time Thermal conductivity |
title | Atomistic study of the influence of lattice defects on the thermal conductivity of silicon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20study%20of%20the%20influence%20of%20lattice%20defects%20on%20the%20thermal%20conductivity%20of%20silicon&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Wang,%20T&rft.date=2014-04-01&rft.volume=22&rft.issue=3&rft.spage=35011&rft.epage=14&rft.pages=35011-14&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/0965-0393/22/3/035011&rft_dat=%3Cproquest_cross%3E1677958894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1677958894&rft_id=info:pmid/&rfr_iscdi=true |