Loading…

Atomistic study of the influence of lattice defects on the thermal conductivity of silicon

Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity o...

Full description

Saved in:
Bibliographic Details
Published in:Modelling and simulation in materials science and engineering 2014-04, Vol.22 (3), p.35011-14
Main Authors: Wang, T, Madsen, G K H, Hartmaier, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393
cites cdi_FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393
container_end_page 14
container_issue 3
container_start_page 35011
container_title Modelling and simulation in materials science and engineering
container_volume 22
creator Wang, T
Madsen, G K H
Hartmaier, A
description Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity of silicon. The results show a clear non-linear decrease of the thermal conductivity with increasing defect volume fraction. Furthermore, it is found that for a given volume fraction of defects, a random distribution shows a lower lattice thermal conductivity. To develop a fundamental understanding of these observations, the spectral energy densities for all phonon branches obtained from 2D Fourier transformations of the atomic trajectories are analyzed. This yields the mean phonon group velocities and relaxation times, which are the main physical quantities contributing to the lattice thermal conductivity. Our analysis reveals that the phonon relaxation time is the most important parameter for describing the degrading of the thermal transport behavior in the defected structures.
doi_str_mv 10.1088/0965-0393/22/3/035011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677958894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677958894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-BKFHPdTmJZumPS6L_2DBi4J4CWmaYJa2qU0q7Lc33Yp4EA-PB8NvBmYQugR8A7goMlzmLMW0pBkhGc0wZRjgCC2A5pDmDF6P0eKHOUVn3u8wxqwgfIHe1sG11gerEh_Gep84k4R3ndjONKPulJ6ERoYI6KTWRqvgE9cdmHhDK5tEua4eVbCfNhz83jY2aufoxMjG64vvv0Qvd7fPm4d0-3T_uFlvU0VzElLOqwpWwBWsqjLHknJVMFVAYTQjAFoCJrmWsqKMVYpiow03ZVGuVEUUj42W6GrO7Qf3MWofRCykdNPITrvRC8g5L1kRHRFlM6oG5_2gjegH28phLwCLaUsx7SSmnQQhgop5y-i7nn3W9WLnxqGLhUTrW69_c6KvTWThD_b__C9SJISG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677958894</pqid></control><display><type>article</type><title>Atomistic study of the influence of lattice defects on the thermal conductivity of silicon</title><source>Institute of Physics</source><creator>Wang, T ; Madsen, G K H ; Hartmaier, A</creator><creatorcontrib>Wang, T ; Madsen, G K H ; Hartmaier, A</creatorcontrib><description>Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity of silicon. The results show a clear non-linear decrease of the thermal conductivity with increasing defect volume fraction. Furthermore, it is found that for a given volume fraction of defects, a random distribution shows a lower lattice thermal conductivity. To develop a fundamental understanding of these observations, the spectral energy densities for all phonon branches obtained from 2D Fourier transformations of the atomic trajectories are analyzed. This yields the mean phonon group velocities and relaxation times, which are the main physical quantities contributing to the lattice thermal conductivity. Our analysis reveals that the phonon relaxation time is the most important parameter for describing the degrading of the thermal transport behavior in the defected structures.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/0965-0393/22/3/035011</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Computer simulation ; Crystal defects ; defects ; density of state ; Fourier transformation ; Heat transfer ; Lattice vacancies ; Lattices ; Phonons ; Relaxation time ; Thermal conductivity</subject><ispartof>Modelling and simulation in materials science and engineering, 2014-04, Vol.22 (3), p.35011-14</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393</citedby><cites>FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, T</creatorcontrib><creatorcontrib>Madsen, G K H</creatorcontrib><creatorcontrib>Hartmaier, A</creatorcontrib><title>Atomistic study of the influence of lattice defects on the thermal conductivity of silicon</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMSE</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity of silicon. The results show a clear non-linear decrease of the thermal conductivity with increasing defect volume fraction. Furthermore, it is found that for a given volume fraction of defects, a random distribution shows a lower lattice thermal conductivity. To develop a fundamental understanding of these observations, the spectral energy densities for all phonon branches obtained from 2D Fourier transformations of the atomic trajectories are analyzed. This yields the mean phonon group velocities and relaxation times, which are the main physical quantities contributing to the lattice thermal conductivity. Our analysis reveals that the phonon relaxation time is the most important parameter for describing the degrading of the thermal transport behavior in the defected structures.</description><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>defects</subject><subject>density of state</subject><subject>Fourier transformation</subject><subject>Heat transfer</subject><subject>Lattice vacancies</subject><subject>Lattices</subject><subject>Phonons</subject><subject>Relaxation time</subject><subject>Thermal conductivity</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-BKFHPdTmJZumPS6L_2DBi4J4CWmaYJa2qU0q7Lc33Yp4EA-PB8NvBmYQugR8A7goMlzmLMW0pBkhGc0wZRjgCC2A5pDmDF6P0eKHOUVn3u8wxqwgfIHe1sG11gerEh_Gep84k4R3ndjONKPulJ6ERoYI6KTWRqvgE9cdmHhDK5tEua4eVbCfNhz83jY2aufoxMjG64vvv0Qvd7fPm4d0-3T_uFlvU0VzElLOqwpWwBWsqjLHknJVMFVAYTQjAFoCJrmWsqKMVYpiow03ZVGuVEUUj42W6GrO7Qf3MWofRCykdNPITrvRC8g5L1kRHRFlM6oG5_2gjegH28phLwCLaUsx7SSmnQQhgop5y-i7nn3W9WLnxqGLhUTrW69_c6KvTWThD_b__C9SJISG</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Wang, T</creator><creator>Madsen, G K H</creator><creator>Hartmaier, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Atomistic study of the influence of lattice defects on the thermal conductivity of silicon</title><author>Wang, T ; Madsen, G K H ; Hartmaier, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>defects</topic><topic>density of state</topic><topic>Fourier transformation</topic><topic>Heat transfer</topic><topic>Lattice vacancies</topic><topic>Lattices</topic><topic>Phonons</topic><topic>Relaxation time</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, T</creatorcontrib><creatorcontrib>Madsen, G K H</creatorcontrib><creatorcontrib>Hartmaier, A</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, T</au><au>Madsen, G K H</au><au>Hartmaier, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic study of the influence of lattice defects on the thermal conductivity of silicon</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMSE</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>22</volume><issue>3</issue><spage>35011</spage><epage>14</epage><pages>35011-14</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>Lattice defects such as vacancies, voids and dislocations are inevitably present in any material of technological interest. In this work, non-equilibrium molecular dynamics simulations are conducted to investigate how the monatomic vacancies and nanovoids influence the lattice thermal conductivity of silicon. The results show a clear non-linear decrease of the thermal conductivity with increasing defect volume fraction. Furthermore, it is found that for a given volume fraction of defects, a random distribution shows a lower lattice thermal conductivity. To develop a fundamental understanding of these observations, the spectral energy densities for all phonon branches obtained from 2D Fourier transformations of the atomic trajectories are analyzed. This yields the mean phonon group velocities and relaxation times, which are the main physical quantities contributing to the lattice thermal conductivity. Our analysis reveals that the phonon relaxation time is the most important parameter for describing the degrading of the thermal transport behavior in the defected structures.</abstract><pub>IOP Publishing</pub><doi>10.1088/0965-0393/22/3/035011</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-0393
ispartof Modelling and simulation in materials science and engineering, 2014-04, Vol.22 (3), p.35011-14
issn 0965-0393
1361-651X
language eng
recordid cdi_proquest_miscellaneous_1677958894
source Institute of Physics
subjects Computer simulation
Crystal defects
defects
density of state
Fourier transformation
Heat transfer
Lattice vacancies
Lattices
Phonons
Relaxation time
Thermal conductivity
title Atomistic study of the influence of lattice defects on the thermal conductivity of silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20study%20of%20the%20influence%20of%20lattice%20defects%20on%20the%20thermal%20conductivity%20of%20silicon&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Wang,%20T&rft.date=2014-04-01&rft.volume=22&rft.issue=3&rft.spage=35011&rft.epage=14&rft.pages=35011-14&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/0965-0393/22/3/035011&rft_dat=%3Cproquest_cross%3E1677958894%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-77bb1417c14b960a37c85c818fe5211ea1026eaab355bc30fef7f9894cb2c7393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1677958894&rft_id=info:pmid/&rfr_iscdi=true