Loading…
Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma
We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product gr...
Saved in:
Published in: | Journal of computational physics 2014-04, Vol.263, p.268-282 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3 |
container_end_page | 282 |
container_issue | |
container_start_page | 268 |
container_title | Journal of computational physics |
container_volume | 263 |
creator | Dolgov, S.V. Smirnov, A.P. Tyrtyshnikov, E.E. |
description | We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed.
The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens. |
doi_str_mv | 10.1016/j.jcp.2014.01.029 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677960488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999114000564</els_id><sourcerecordid>1677960488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3</originalsourceid><addsrcrecordid>eNqFkT1OxDAQhS0EEsvPAehS0iSME9tJRAWIP2klGqgtx56AQxIHOwtsxx24ISchYamhmmLe9zRvHiFHFBIKVJw0SaOHJAXKEqAJpOUWWVAoIU5zKrbJAiClcVmWdJfshdAAQMFZsSDN0r3FXvXPkRoG795tp0br-sj20fiEUb_q0Fut2qhzBlvbP0au_tlcKd_i-uvj83zVY6dmIoyqsq0d1zM9mbgwPM10NLQqdOqA7NSqDXj4O_fJw9Xl_cVNvLy7vr04W8aagRjjyqiyqLLp-Lxmhhem0nmWaZHxqubIoTZGI-M5KqZznnFjaJFWVY1cC5EiZvvkeOM75XlZYRhlZ4PGtlU9ulWQVOR5KYAVxf9SzvJCcMZnKd1ItXcheKzl4Kdn-bWkIOcKZCOnCuRcgQQqpwom5nTD4BT31aKXQVvsNRrrUY_SOPsH_Q2dJ5IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547865458</pqid></control><display><type>article</type><title>Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dolgov, S.V. ; Smirnov, A.P. ; Tyrtyshnikov, E.E.</creator><creatorcontrib>Dolgov, S.V. ; Smirnov, A.P. ; Tyrtyshnikov, E.E.</creatorcontrib><description>We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed.
The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.01.029</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computation ; DMRG ; High-dimensional problems ; Hybrid methods ; Instability ; Ionospheric irregularities ; Mathematical analysis ; Mathematical models ; Matlab ; MPS ; Plasma (physics) ; Plasma waves and instabilities ; Separation ; Tensor train format ; Tensors ; Vlasov equation</subject><ispartof>Journal of computational physics, 2014-04, Vol.263, p.268-282</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3</citedby><cites>FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dolgov, S.V.</creatorcontrib><creatorcontrib>Smirnov, A.P.</creatorcontrib><creatorcontrib>Tyrtyshnikov, E.E.</creatorcontrib><title>Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma</title><title>Journal of computational physics</title><description>We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed.
The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.</description><subject>Computation</subject><subject>DMRG</subject><subject>High-dimensional problems</subject><subject>Hybrid methods</subject><subject>Instability</subject><subject>Ionospheric irregularities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>MPS</subject><subject>Plasma (physics)</subject><subject>Plasma waves and instabilities</subject><subject>Separation</subject><subject>Tensor train format</subject><subject>Tensors</subject><subject>Vlasov equation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkT1OxDAQhS0EEsvPAehS0iSME9tJRAWIP2klGqgtx56AQxIHOwtsxx24ISchYamhmmLe9zRvHiFHFBIKVJw0SaOHJAXKEqAJpOUWWVAoIU5zKrbJAiClcVmWdJfshdAAQMFZsSDN0r3FXvXPkRoG795tp0br-sj20fiEUb_q0Fut2qhzBlvbP0au_tlcKd_i-uvj83zVY6dmIoyqsq0d1zM9mbgwPM10NLQqdOqA7NSqDXj4O_fJw9Xl_cVNvLy7vr04W8aagRjjyqiyqLLp-Lxmhhem0nmWaZHxqubIoTZGI-M5KqZznnFjaJFWVY1cC5EiZvvkeOM75XlZYRhlZ4PGtlU9ulWQVOR5KYAVxf9SzvJCcMZnKd1ItXcheKzl4Kdn-bWkIOcKZCOnCuRcgQQqpwom5nTD4BT31aKXQVvsNRrrUY_SOPsH_Q2dJ5IQ</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Dolgov, S.V.</creator><creator>Smirnov, A.P.</creator><creator>Tyrtyshnikov, E.E.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140415</creationdate><title>Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma</title><author>Dolgov, S.V. ; Smirnov, A.P. ; Tyrtyshnikov, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computation</topic><topic>DMRG</topic><topic>High-dimensional problems</topic><topic>Hybrid methods</topic><topic>Instability</topic><topic>Ionospheric irregularities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>MPS</topic><topic>Plasma (physics)</topic><topic>Plasma waves and instabilities</topic><topic>Separation</topic><topic>Tensor train format</topic><topic>Tensors</topic><topic>Vlasov equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgov, S.V.</creatorcontrib><creatorcontrib>Smirnov, A.P.</creatorcontrib><creatorcontrib>Tyrtyshnikov, E.E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgov, S.V.</au><au>Smirnov, A.P.</au><au>Tyrtyshnikov, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma</atitle><jtitle>Journal of computational physics</jtitle><date>2014-04-15</date><risdate>2014</risdate><volume>263</volume><spage>268</spage><epage>282</epage><pages>268-282</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed.
The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.01.029</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2014-04, Vol.263, p.268-282 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677960488 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Computation DMRG High-dimensional problems Hybrid methods Instability Ionospheric irregularities Mathematical analysis Mathematical models Matlab MPS Plasma (physics) Plasma waves and instabilities Separation Tensor train format Tensors Vlasov equation |
title | Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-rank%20approximation%20in%20the%20numerical%20modeling%20of%20the%20Farley%E2%80%93Buneman%20instability%20in%20ionospheric%20plasma&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dolgov,%20S.V.&rft.date=2014-04-15&rft.volume=263&rft.spage=268&rft.epage=282&rft.pages=268-282&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.01.029&rft_dat=%3Cproquest_cross%3E1677960488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547865458&rft_id=info:pmid/&rfr_iscdi=true |