Loading…

Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma

We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product gr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2014-04, Vol.263, p.268-282
Main Authors: Dolgov, S.V., Smirnov, A.P., Tyrtyshnikov, E.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3
cites cdi_FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3
container_end_page 282
container_issue
container_start_page 268
container_title Journal of computational physics
container_volume 263
creator Dolgov, S.V.
Smirnov, A.P.
Tyrtyshnikov, E.E.
description We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed. The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.
doi_str_mv 10.1016/j.jcp.2014.01.029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677960488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999114000564</els_id><sourcerecordid>1677960488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3</originalsourceid><addsrcrecordid>eNqFkT1OxDAQhS0EEsvPAehS0iSME9tJRAWIP2klGqgtx56AQxIHOwtsxx24ISchYamhmmLe9zRvHiFHFBIKVJw0SaOHJAXKEqAJpOUWWVAoIU5zKrbJAiClcVmWdJfshdAAQMFZsSDN0r3FXvXPkRoG795tp0br-sj20fiEUb_q0Fut2qhzBlvbP0au_tlcKd_i-uvj83zVY6dmIoyqsq0d1zM9mbgwPM10NLQqdOqA7NSqDXj4O_fJw9Xl_cVNvLy7vr04W8aagRjjyqiyqLLp-Lxmhhem0nmWaZHxqubIoTZGI-M5KqZznnFjaJFWVY1cC5EiZvvkeOM75XlZYRhlZ4PGtlU9ulWQVOR5KYAVxf9SzvJCcMZnKd1ItXcheKzl4Kdn-bWkIOcKZCOnCuRcgQQqpwom5nTD4BT31aKXQVvsNRrrUY_SOPsH_Q2dJ5IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547865458</pqid></control><display><type>article</type><title>Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dolgov, S.V. ; Smirnov, A.P. ; Tyrtyshnikov, E.E.</creator><creatorcontrib>Dolgov, S.V. ; Smirnov, A.P. ; Tyrtyshnikov, E.E.</creatorcontrib><description>We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed. The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.01.029</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computation ; DMRG ; High-dimensional problems ; Hybrid methods ; Instability ; Ionospheric irregularities ; Mathematical analysis ; Mathematical models ; Matlab ; MPS ; Plasma (physics) ; Plasma waves and instabilities ; Separation ; Tensor train format ; Tensors ; Vlasov equation</subject><ispartof>Journal of computational physics, 2014-04, Vol.263, p.268-282</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3</citedby><cites>FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dolgov, S.V.</creatorcontrib><creatorcontrib>Smirnov, A.P.</creatorcontrib><creatorcontrib>Tyrtyshnikov, E.E.</creatorcontrib><title>Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma</title><title>Journal of computational physics</title><description>We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed. The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.</description><subject>Computation</subject><subject>DMRG</subject><subject>High-dimensional problems</subject><subject>Hybrid methods</subject><subject>Instability</subject><subject>Ionospheric irregularities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>MPS</subject><subject>Plasma (physics)</subject><subject>Plasma waves and instabilities</subject><subject>Separation</subject><subject>Tensor train format</subject><subject>Tensors</subject><subject>Vlasov equation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkT1OxDAQhS0EEsvPAehS0iSME9tJRAWIP2klGqgtx56AQxIHOwtsxx24ISchYamhmmLe9zRvHiFHFBIKVJw0SaOHJAXKEqAJpOUWWVAoIU5zKrbJAiClcVmWdJfshdAAQMFZsSDN0r3FXvXPkRoG795tp0br-sj20fiEUb_q0Fut2qhzBlvbP0au_tlcKd_i-uvj83zVY6dmIoyqsq0d1zM9mbgwPM10NLQqdOqA7NSqDXj4O_fJw9Xl_cVNvLy7vr04W8aagRjjyqiyqLLp-Lxmhhem0nmWaZHxqubIoTZGI-M5KqZznnFjaJFWVY1cC5EiZvvkeOM75XlZYRhlZ4PGtlU9ulWQVOR5KYAVxf9SzvJCcMZnKd1ItXcheKzl4Kdn-bWkIOcKZCOnCuRcgQQqpwom5nTD4BT31aKXQVvsNRrrUY_SOPsH_Q2dJ5IQ</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Dolgov, S.V.</creator><creator>Smirnov, A.P.</creator><creator>Tyrtyshnikov, E.E.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140415</creationdate><title>Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma</title><author>Dolgov, S.V. ; Smirnov, A.P. ; Tyrtyshnikov, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computation</topic><topic>DMRG</topic><topic>High-dimensional problems</topic><topic>Hybrid methods</topic><topic>Instability</topic><topic>Ionospheric irregularities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>MPS</topic><topic>Plasma (physics)</topic><topic>Plasma waves and instabilities</topic><topic>Separation</topic><topic>Tensor train format</topic><topic>Tensors</topic><topic>Vlasov equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgov, S.V.</creatorcontrib><creatorcontrib>Smirnov, A.P.</creatorcontrib><creatorcontrib>Tyrtyshnikov, E.E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgov, S.V.</au><au>Smirnov, A.P.</au><au>Tyrtyshnikov, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma</atitle><jtitle>Journal of computational physics</jtitle><date>2014-04-15</date><risdate>2014</risdate><volume>263</volume><spage>268</spage><epage>282</epage><pages>268-282</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We consider numerical modeling of the Farley–Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed. The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.01.029</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2014-04, Vol.263, p.268-282
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1677960488
source ScienceDirect Freedom Collection 2022-2024
subjects Computation
DMRG
High-dimensional problems
Hybrid methods
Instability
Ionospheric irregularities
Mathematical analysis
Mathematical models
Matlab
MPS
Plasma (physics)
Plasma waves and instabilities
Separation
Tensor train format
Tensors
Vlasov equation
title Low-rank approximation in the numerical modeling of the Farley–Buneman instability in ionospheric plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-rank%20approximation%20in%20the%20numerical%20modeling%20of%20the%20Farley%E2%80%93Buneman%20instability%20in%20ionospheric%20plasma&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dolgov,%20S.V.&rft.date=2014-04-15&rft.volume=263&rft.spage=268&rft.epage=282&rft.pages=268-282&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.01.029&rft_dat=%3Cproquest_cross%3E1677960488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-bda98b31097f4d58dbc733c635bf5e50fddce457ea4c7535dd182bbfe5c662ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1547865458&rft_id=info:pmid/&rfr_iscdi=true