Loading…
A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes
We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational...
Saved in:
Published in: | Journal of computational physics 2012-08, Vol.231 (21), p.7037-7056 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3 |
container_end_page | 7056 |
container_issue | 21 |
container_start_page | 7037 |
container_title | Journal of computational physics |
container_volume | 231 |
creator | Ferrer, Esteban Willden, Richard H.J. |
description | We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.
A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x–y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.
In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.
The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil. |
doi_str_mv | 10.1016/j.jcp.2012.04.039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677967100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112002215</els_id><sourcerecordid>1677967100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EEkvhAbj5gsQlYfxn7UScqpYWpAoOwNlynEnX22y8eJIibrwDb8iT4GgrjnCaw_zmm_nmY-ylgFqAMG_29T4cawlC1qBrUO0jthHQQiWtMI_ZBkCKqm1b8ZQ9I9oDQLPVzYYt53wXb3c85R4zv4wU0jTHaUkL8Ws_Yr6LE__98xe_SkuOBYlTSIdjRqLYjcjVJf_o70ujMJ_ndIfEKY33Bfwe5x3PafZF7pbTGPu1HpB2SM_Zk8GPhC8e6hn7evXuy8X76ubT9YeL85sqqFbNlbIteC8G6xs9GFSmV10HgL4JKHzvZY_abnWxFmCwjVGNsZ0OoH0Ine56dcZen3SPOX1bkGZ3KA5xHP2ExaETxtrWWAHwfxQaKSUYZQoqTmjIiSjj4I45Hnz-USC3puH2rqTh1jQcaFfSKDOvHuQ9BT8O2U8h0t9BaZTcbuV6xtsTh-Ut618dhYhTwD5mDLPrU_zHlj9JqaKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082220636</pqid></control><display><type>article</type><title>A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ferrer, Esteban ; Willden, Richard H.J.</creator><creatorcontrib>Ferrer, Esteban ; Willden, Richard H.J.</creatorcontrib><description>We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.
A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x–y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.
In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.
The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.04.039</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Airfoils ; Arbitrary Lagrangian–Eulerian ; Computational techniques ; Curved boundaries ; Exact sciences and technology ; Finite element method ; Fourier extension ; Galerkin methods ; High order Discontinuous Galerkin ; Incompressible Navier–Stokes ; Mathematical analysis ; Mathematical methods in physics ; Modal basis functions ; Navier-Stokes equations ; Physics ; Rotating ; Rotating sliding mesh ; Sliding ; Solvers ; Symmetric Interior Penalty Galerkin</subject><ispartof>Journal of computational physics, 2012-08, Vol.231 (21), p.7037-7056</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3</citedby><cites>FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26325520$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrer, Esteban</creatorcontrib><creatorcontrib>Willden, Richard H.J.</creatorcontrib><title>A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes</title><title>Journal of computational physics</title><description>We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.
A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x–y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.
In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.
The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.</description><subject>Airfoils</subject><subject>Arbitrary Lagrangian–Eulerian</subject><subject>Computational techniques</subject><subject>Curved boundaries</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fourier extension</subject><subject>Galerkin methods</subject><subject>High order Discontinuous Galerkin</subject><subject>Incompressible Navier–Stokes</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Modal basis functions</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Rotating</subject><subject>Rotating sliding mesh</subject><subject>Sliding</subject><subject>Solvers</subject><subject>Symmetric Interior Penalty Galerkin</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EEkvhAbj5gsQlYfxn7UScqpYWpAoOwNlynEnX22y8eJIibrwDb8iT4GgrjnCaw_zmm_nmY-ylgFqAMG_29T4cawlC1qBrUO0jthHQQiWtMI_ZBkCKqm1b8ZQ9I9oDQLPVzYYt53wXb3c85R4zv4wU0jTHaUkL8Ws_Yr6LE__98xe_SkuOBYlTSIdjRqLYjcjVJf_o70ujMJ_ndIfEKY33Bfwe5x3PafZF7pbTGPu1HpB2SM_Zk8GPhC8e6hn7evXuy8X76ubT9YeL85sqqFbNlbIteC8G6xs9GFSmV10HgL4JKHzvZY_abnWxFmCwjVGNsZ0OoH0Ine56dcZen3SPOX1bkGZ3KA5xHP2ExaETxtrWWAHwfxQaKSUYZQoqTmjIiSjj4I45Hnz-USC3puH2rqTh1jQcaFfSKDOvHuQ9BT8O2U8h0t9BaZTcbuV6xtsTh-Ut618dhYhTwD5mDLPrU_zHlj9JqaKg</recordid><startdate>20120830</startdate><enddate>20120830</enddate><creator>Ferrer, Esteban</creator><creator>Willden, Richard H.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120830</creationdate><title>A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes</title><author>Ferrer, Esteban ; Willden, Richard H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Airfoils</topic><topic>Arbitrary Lagrangian–Eulerian</topic><topic>Computational techniques</topic><topic>Curved boundaries</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fourier extension</topic><topic>Galerkin methods</topic><topic>High order Discontinuous Galerkin</topic><topic>Incompressible Navier–Stokes</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Modal basis functions</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Rotating</topic><topic>Rotating sliding mesh</topic><topic>Sliding</topic><topic>Solvers</topic><topic>Symmetric Interior Penalty Galerkin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, Esteban</creatorcontrib><creatorcontrib>Willden, Richard H.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, Esteban</au><au>Willden, Richard H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes</atitle><jtitle>Journal of computational physics</jtitle><date>2012-08-30</date><risdate>2012</risdate><volume>231</volume><issue>21</issue><spage>7037</spage><epage>7056</epage><pages>7037-7056</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.
A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x–y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.
In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.
The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.04.039</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2012-08, Vol.231 (21), p.7037-7056 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677967100 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Airfoils Arbitrary Lagrangian–Eulerian Computational techniques Curved boundaries Exact sciences and technology Finite element method Fourier extension Galerkin methods High order Discontinuous Galerkin Incompressible Navier–Stokes Mathematical analysis Mathematical methods in physics Modal basis functions Navier-Stokes equations Physics Rotating Rotating sliding mesh Sliding Solvers Symmetric Interior Penalty Galerkin |
title | A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20order%20Discontinuous%20Galerkin%20%E2%80%93%20Fourier%20incompressible%203D%20Navier%E2%80%93Stokes%20solver%20with%20rotating%20sliding%20meshes&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Ferrer,%20Esteban&rft.date=2012-08-30&rft.volume=231&rft.issue=21&rft.spage=7037&rft.epage=7056&rft.pages=7037-7056&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.04.039&rft_dat=%3Cproquest_cross%3E1677967100%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082220636&rft_id=info:pmid/&rfr_iscdi=true |