Loading…

A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes

We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2012-08, Vol.231 (21), p.7037-7056
Main Authors: Ferrer, Esteban, Willden, Richard H.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3
cites cdi_FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3
container_end_page 7056
container_issue 21
container_start_page 7037
container_title Journal of computational physics
container_volume 231
creator Ferrer, Esteban
Willden, Richard H.J.
description We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes. A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x–y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist. In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics. The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.
doi_str_mv 10.1016/j.jcp.2012.04.039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677967100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112002215</els_id><sourcerecordid>1677967100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EEkvhAbj5gsQlYfxn7UScqpYWpAoOwNlynEnX22y8eJIibrwDb8iT4GgrjnCaw_zmm_nmY-ylgFqAMG_29T4cawlC1qBrUO0jthHQQiWtMI_ZBkCKqm1b8ZQ9I9oDQLPVzYYt53wXb3c85R4zv4wU0jTHaUkL8Ws_Yr6LE__98xe_SkuOBYlTSIdjRqLYjcjVJf_o70ujMJ_ndIfEKY33Bfwe5x3PafZF7pbTGPu1HpB2SM_Zk8GPhC8e6hn7evXuy8X76ubT9YeL85sqqFbNlbIteC8G6xs9GFSmV10HgL4JKHzvZY_abnWxFmCwjVGNsZ0OoH0Ine56dcZen3SPOX1bkGZ3KA5xHP2ExaETxtrWWAHwfxQaKSUYZQoqTmjIiSjj4I45Hnz-USC3puH2rqTh1jQcaFfSKDOvHuQ9BT8O2U8h0t9BaZTcbuV6xtsTh-Ut618dhYhTwD5mDLPrU_zHlj9JqaKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082220636</pqid></control><display><type>article</type><title>A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ferrer, Esteban ; Willden, Richard H.J.</creator><creatorcontrib>Ferrer, Esteban ; Willden, Richard H.J.</creatorcontrib><description>We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes. A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x–y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist. In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics. The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.04.039</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Airfoils ; Arbitrary Lagrangian–Eulerian ; Computational techniques ; Curved boundaries ; Exact sciences and technology ; Finite element method ; Fourier extension ; Galerkin methods ; High order Discontinuous Galerkin ; Incompressible Navier–Stokes ; Mathematical analysis ; Mathematical methods in physics ; Modal basis functions ; Navier-Stokes equations ; Physics ; Rotating ; Rotating sliding mesh ; Sliding ; Solvers ; Symmetric Interior Penalty Galerkin</subject><ispartof>Journal of computational physics, 2012-08, Vol.231 (21), p.7037-7056</ispartof><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3</citedby><cites>FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26325520$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrer, Esteban</creatorcontrib><creatorcontrib>Willden, Richard H.J.</creatorcontrib><title>A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes</title><title>Journal of computational physics</title><description>We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes. A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x–y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist. In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics. The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.</description><subject>Airfoils</subject><subject>Arbitrary Lagrangian–Eulerian</subject><subject>Computational techniques</subject><subject>Curved boundaries</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fourier extension</subject><subject>Galerkin methods</subject><subject>High order Discontinuous Galerkin</subject><subject>Incompressible Navier–Stokes</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Modal basis functions</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Rotating</subject><subject>Rotating sliding mesh</subject><subject>Sliding</subject><subject>Solvers</subject><subject>Symmetric Interior Penalty Galerkin</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EEkvhAbj5gsQlYfxn7UScqpYWpAoOwNlynEnX22y8eJIibrwDb8iT4GgrjnCaw_zmm_nmY-ylgFqAMG_29T4cawlC1qBrUO0jthHQQiWtMI_ZBkCKqm1b8ZQ9I9oDQLPVzYYt53wXb3c85R4zv4wU0jTHaUkL8Ws_Yr6LE__98xe_SkuOBYlTSIdjRqLYjcjVJf_o70ujMJ_ndIfEKY33Bfwe5x3PafZF7pbTGPu1HpB2SM_Zk8GPhC8e6hn7evXuy8X76ubT9YeL85sqqFbNlbIteC8G6xs9GFSmV10HgL4JKHzvZY_abnWxFmCwjVGNsZ0OoH0Ine56dcZen3SPOX1bkGZ3KA5xHP2ExaETxtrWWAHwfxQaKSUYZQoqTmjIiSjj4I45Hnz-USC3puH2rqTh1jQcaFfSKDOvHuQ9BT8O2U8h0t9BaZTcbuV6xtsTh-Ut618dhYhTwD5mDLPrU_zHlj9JqaKg</recordid><startdate>20120830</startdate><enddate>20120830</enddate><creator>Ferrer, Esteban</creator><creator>Willden, Richard H.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120830</creationdate><title>A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes</title><author>Ferrer, Esteban ; Willden, Richard H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Airfoils</topic><topic>Arbitrary Lagrangian–Eulerian</topic><topic>Computational techniques</topic><topic>Curved boundaries</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fourier extension</topic><topic>Galerkin methods</topic><topic>High order Discontinuous Galerkin</topic><topic>Incompressible Navier–Stokes</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Modal basis functions</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Rotating</topic><topic>Rotating sliding mesh</topic><topic>Sliding</topic><topic>Solvers</topic><topic>Symmetric Interior Penalty Galerkin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, Esteban</creatorcontrib><creatorcontrib>Willden, Richard H.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrer, Esteban</au><au>Willden, Richard H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes</atitle><jtitle>Journal of computational physics</jtitle><date>2012-08-30</date><risdate>2012</risdate><volume>231</volume><issue>21</issue><spage>7037</spage><epage>7056</epage><pages>7037-7056</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>We present the development of a sliding mesh capability for an unsteady high order (order⩾3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes. A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x–y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist. In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics. The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.04.039</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2012-08, Vol.231 (21), p.7037-7056
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1677967100
source ScienceDirect Freedom Collection 2022-2024
subjects Airfoils
Arbitrary Lagrangian–Eulerian
Computational techniques
Curved boundaries
Exact sciences and technology
Finite element method
Fourier extension
Galerkin methods
High order Discontinuous Galerkin
Incompressible Navier–Stokes
Mathematical analysis
Mathematical methods in physics
Modal basis functions
Navier-Stokes equations
Physics
Rotating
Rotating sliding mesh
Sliding
Solvers
Symmetric Interior Penalty Galerkin
title A high order Discontinuous Galerkin – Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20order%20Discontinuous%20Galerkin%20%E2%80%93%20Fourier%20incompressible%203D%20Navier%E2%80%93Stokes%20solver%20with%20rotating%20sliding%20meshes&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Ferrer,%20Esteban&rft.date=2012-08-30&rft.volume=231&rft.issue=21&rft.spage=7037&rft.epage=7056&rft.pages=7037-7056&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.04.039&rft_dat=%3Cproquest_cross%3E1677967100%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-3790aa1f7a84f6e36d3bb00ea8ce1ada2de4754021c0f7863867b4c04accb4bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082220636&rft_id=info:pmid/&rfr_iscdi=true