Loading…

Development of biporous wicks for flat-plate loop heat pipe

Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electroni...

Full description

Saved in:
Bibliographic Details
Published in:Experimental thermal and fluid science 2012-02, Vol.37, p.91-97
Main Authors: Li, Huan, Liu, ZhiChun, Chen, BinBin, Liu, Wei, Li, Chen, Yang, Jinguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3
cites cdi_FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3
container_end_page 97
container_issue
container_start_page 91
container_title Experimental thermal and fluid science
container_volume 37
creator Li, Huan
Liu, ZhiChun
Chen, BinBin
Liu, Wei
Li, Chen
Yang, Jinguo
description Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electronic Microscope (SEM), and permeability of wicks is calculated by empirical equation. The effect of different sintering method, proportion of pore former, and sintering temperature on the wicks is investigated experimentally. Result shows that wicks are successfully fabricated, the optimal wicks are found to be sintered at 700 °C, using cold pressing sintering method, with pore former content 30% by volume; these wicks could reach the porosity of 77.40%, the permeability of 3.15 × 10 −13 m 2, and have sufficient mechanical strength to meet the machining requirements. The effect of lathing and wire electro discharge machining on surface pores of wick is analyzed by SEM. In order to verify the performance of the biporous wick, a flat plate type of LHP is designed, fabricated and tested in this paper, and the results presents that the LHP can startup and run reliably under different heat loads.
doi_str_mv 10.1016/j.expthermflusci.2011.10.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677967966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089417771100210X</els_id><sourcerecordid>1677967966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWKvfYQ8KXnZNtrv5g16kWhUKXvS8JNkJTd1uYrKt-u1NaRE8KQwzh_nNe8ND6JzggmBCr5YFfPphAWFlunXUtigxIWlVYMwO0IhwJvKy5PQQjTAXVU4YY8foJMYlxpiXBI_Q9R1soHN-Bf2QOZMp611w65h9WP0WM-NCZjo55D41yDrnfLYAOWTeejhFR0Z2Ec72c4xeZ_cv08d8_vzwNL2d57oS5ZBzZlojq7ZUVIkKC9oqzlsMnCvBlFATBrhqhSoJJ1iBNkJKolouJ1RVVQ2TMbrc6frg3tcQh2Zlo4aukz2kVxtCGRM0Ff0bxQRzXhNGEnqzQ3VwMQYwjQ92JcNXgrYcbZbN73ibbbzbbYo3nV_snWTUsjNB9trGH42yrpMErRM323GQEtpYCE1Sgl5DawPooWmd_Z_hN2sYmYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010885171</pqid></control><display><type>article</type><title>Development of biporous wicks for flat-plate loop heat pipe</title><source>ScienceDirect Journals</source><creator>Li, Huan ; Liu, ZhiChun ; Chen, BinBin ; Liu, Wei ; Li, Chen ; Yang, Jinguo</creator><creatorcontrib>Li, Huan ; Liu, ZhiChun ; Chen, BinBin ; Liu, Wei ; Li, Chen ; Yang, Jinguo</creatorcontrib><description>Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electronic Microscope (SEM), and permeability of wicks is calculated by empirical equation. The effect of different sintering method, proportion of pore former, and sintering temperature on the wicks is investigated experimentally. Result shows that wicks are successfully fabricated, the optimal wicks are found to be sintered at 700 °C, using cold pressing sintering method, with pore former content 30% by volume; these wicks could reach the porosity of 77.40%, the permeability of 3.15 × 10 −13 m 2, and have sufficient mechanical strength to meet the machining requirements. The effect of lathing and wire electro discharge machining on surface pores of wick is analyzed by SEM. In order to verify the performance of the biporous wick, a flat plate type of LHP is designed, fabricated and tested in this paper, and the results presents that the LHP can startup and run reliably under different heat loads.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2011.10.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Biporous ; Cold pressing ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Experiment ; Heat pipes ; Loop heat pipe ; Loop heat pipes ; Machining ; Permeability ; Porosity ; Porous wick ; Radius ; Scanning electron microscopy ; Sintering ; Sintering (powder metallurgy) ; Wicks</subject><ispartof>Experimental thermal and fluid science, 2012-02, Vol.37, p.91-97</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3</citedby><cites>FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25501665$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Liu, ZhiChun</creatorcontrib><creatorcontrib>Chen, BinBin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Yang, Jinguo</creatorcontrib><title>Development of biporous wicks for flat-plate loop heat pipe</title><title>Experimental thermal and fluid science</title><description>Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electronic Microscope (SEM), and permeability of wicks is calculated by empirical equation. The effect of different sintering method, proportion of pore former, and sintering temperature on the wicks is investigated experimentally. Result shows that wicks are successfully fabricated, the optimal wicks are found to be sintered at 700 °C, using cold pressing sintering method, with pore former content 30% by volume; these wicks could reach the porosity of 77.40%, the permeability of 3.15 × 10 −13 m 2, and have sufficient mechanical strength to meet the machining requirements. The effect of lathing and wire electro discharge machining on surface pores of wick is analyzed by SEM. In order to verify the performance of the biporous wick, a flat plate type of LHP is designed, fabricated and tested in this paper, and the results presents that the LHP can startup and run reliably under different heat loads.</description><subject>Applied sciences</subject><subject>Biporous</subject><subject>Cold pressing</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Experiment</subject><subject>Heat pipes</subject><subject>Loop heat pipe</subject><subject>Loop heat pipes</subject><subject>Machining</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Porous wick</subject><subject>Radius</subject><subject>Scanning electron microscopy</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Wicks</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LAzEQxYMoWKvfYQ8KXnZNtrv5g16kWhUKXvS8JNkJTd1uYrKt-u1NaRE8KQwzh_nNe8ND6JzggmBCr5YFfPphAWFlunXUtigxIWlVYMwO0IhwJvKy5PQQjTAXVU4YY8foJMYlxpiXBI_Q9R1soHN-Bf2QOZMp611w65h9WP0WM-NCZjo55D41yDrnfLYAOWTeejhFR0Z2Ec72c4xeZ_cv08d8_vzwNL2d57oS5ZBzZlojq7ZUVIkKC9oqzlsMnCvBlFATBrhqhSoJJ1iBNkJKolouJ1RVVQ2TMbrc6frg3tcQh2Zlo4aukz2kVxtCGRM0Ff0bxQRzXhNGEnqzQ3VwMQYwjQ92JcNXgrYcbZbN73ibbbzbbYo3nV_snWTUsjNB9trGH42yrpMErRM323GQEtpYCE1Sgl5DawPooWmd_Z_hN2sYmYA</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Li, Huan</creator><creator>Liu, ZhiChun</creator><creator>Chen, BinBin</creator><creator>Liu, Wei</creator><creator>Li, Chen</creator><creator>Yang, Jinguo</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Development of biporous wicks for flat-plate loop heat pipe</title><author>Li, Huan ; Liu, ZhiChun ; Chen, BinBin ; Liu, Wei ; Li, Chen ; Yang, Jinguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Biporous</topic><topic>Cold pressing</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Experiment</topic><topic>Heat pipes</topic><topic>Loop heat pipe</topic><topic>Loop heat pipes</topic><topic>Machining</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Porous wick</topic><topic>Radius</topic><topic>Scanning electron microscopy</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Wicks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Liu, ZhiChun</creatorcontrib><creatorcontrib>Chen, BinBin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Yang, Jinguo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huan</au><au>Liu, ZhiChun</au><au>Chen, BinBin</au><au>Liu, Wei</au><au>Li, Chen</au><au>Yang, Jinguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of biporous wicks for flat-plate loop heat pipe</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>37</volume><spage>91</spage><epage>97</epage><pages>91-97</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electronic Microscope (SEM), and permeability of wicks is calculated by empirical equation. The effect of different sintering method, proportion of pore former, and sintering temperature on the wicks is investigated experimentally. Result shows that wicks are successfully fabricated, the optimal wicks are found to be sintered at 700 °C, using cold pressing sintering method, with pore former content 30% by volume; these wicks could reach the porosity of 77.40%, the permeability of 3.15 × 10 −13 m 2, and have sufficient mechanical strength to meet the machining requirements. The effect of lathing and wire electro discharge machining on surface pores of wick is analyzed by SEM. In order to verify the performance of the biporous wick, a flat plate type of LHP is designed, fabricated and tested in this paper, and the results presents that the LHP can startup and run reliably under different heat loads.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2011.10.007</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2012-02, Vol.37, p.91-97
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_1677967966
source ScienceDirect Journals
subjects Applied sciences
Biporous
Cold pressing
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Experiment
Heat pipes
Loop heat pipe
Loop heat pipes
Machining
Permeability
Porosity
Porous wick
Radius
Scanning electron microscopy
Sintering
Sintering (powder metallurgy)
Wicks
title Development of biporous wicks for flat-plate loop heat pipe
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20biporous%20wicks%20for%20flat-plate%20loop%20heat%20pipe&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Li,%20Huan&rft.date=2012-02-01&rft.volume=37&rft.spage=91&rft.epage=97&rft.pages=91-97&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2011.10.007&rft_dat=%3Cproquest_cross%3E1677967966%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010885171&rft_id=info:pmid/&rfr_iscdi=true