Loading…
Development of biporous wicks for flat-plate loop heat pipe
Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electroni...
Saved in:
Published in: | Experimental thermal and fluid science 2012-02, Vol.37, p.91-97 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3 |
container_end_page | 97 |
container_issue | |
container_start_page | 91 |
container_title | Experimental thermal and fluid science |
container_volume | 37 |
creator | Li, Huan Liu, ZhiChun Chen, BinBin Liu, Wei Li, Chen Yang, Jinguo |
description | Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electronic Microscope (SEM), and permeability of wicks is calculated by empirical equation. The effect of different sintering method, proportion of pore former, and sintering temperature on the wicks is investigated experimentally. Result shows that wicks are successfully fabricated, the optimal wicks are found to be sintered at 700
°C, using cold pressing sintering method, with pore former content 30% by volume; these wicks could reach the porosity of 77.40%, the permeability of 3.15
×
10
−13
m
2, and have sufficient mechanical strength to meet the machining requirements. The effect of lathing and wire electro discharge machining on surface pores of wick is analyzed by SEM. In order to verify the performance of the biporous wick, a flat plate type of LHP is designed, fabricated and tested in this paper, and the results presents that the LHP can startup and run reliably under different heat loads. |
doi_str_mv | 10.1016/j.expthermflusci.2011.10.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677967966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089417771100210X</els_id><sourcerecordid>1677967966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWKvfYQ8KXnZNtrv5g16kWhUKXvS8JNkJTd1uYrKt-u1NaRE8KQwzh_nNe8ND6JzggmBCr5YFfPphAWFlunXUtigxIWlVYMwO0IhwJvKy5PQQjTAXVU4YY8foJMYlxpiXBI_Q9R1soHN-Bf2QOZMp611w65h9WP0WM-NCZjo55D41yDrnfLYAOWTeejhFR0Z2Ec72c4xeZ_cv08d8_vzwNL2d57oS5ZBzZlojq7ZUVIkKC9oqzlsMnCvBlFATBrhqhSoJJ1iBNkJKolouJ1RVVQ2TMbrc6frg3tcQh2Zlo4aukz2kVxtCGRM0Ff0bxQRzXhNGEnqzQ3VwMQYwjQ92JcNXgrYcbZbN73ibbbzbbYo3nV_snWTUsjNB9trGH42yrpMErRM323GQEtpYCE1Sgl5DawPooWmd_Z_hN2sYmYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010885171</pqid></control><display><type>article</type><title>Development of biporous wicks for flat-plate loop heat pipe</title><source>ScienceDirect Journals</source><creator>Li, Huan ; Liu, ZhiChun ; Chen, BinBin ; Liu, Wei ; Li, Chen ; Yang, Jinguo</creator><creatorcontrib>Li, Huan ; Liu, ZhiChun ; Chen, BinBin ; Liu, Wei ; Li, Chen ; Yang, Jinguo</creatorcontrib><description>Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electronic Microscope (SEM), and permeability of wicks is calculated by empirical equation. The effect of different sintering method, proportion of pore former, and sintering temperature on the wicks is investigated experimentally. Result shows that wicks are successfully fabricated, the optimal wicks are found to be sintered at 700
°C, using cold pressing sintering method, with pore former content 30% by volume; these wicks could reach the porosity of 77.40%, the permeability of 3.15
×
10
−13
m
2, and have sufficient mechanical strength to meet the machining requirements. The effect of lathing and wire electro discharge machining on surface pores of wick is analyzed by SEM. In order to verify the performance of the biporous wick, a flat plate type of LHP is designed, fabricated and tested in this paper, and the results presents that the LHP can startup and run reliably under different heat loads.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2011.10.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Biporous ; Cold pressing ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Experiment ; Heat pipes ; Loop heat pipe ; Loop heat pipes ; Machining ; Permeability ; Porosity ; Porous wick ; Radius ; Scanning electron microscopy ; Sintering ; Sintering (powder metallurgy) ; Wicks</subject><ispartof>Experimental thermal and fluid science, 2012-02, Vol.37, p.91-97</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3</citedby><cites>FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25501665$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Liu, ZhiChun</creatorcontrib><creatorcontrib>Chen, BinBin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Yang, Jinguo</creatorcontrib><title>Development of biporous wicks for flat-plate loop heat pipe</title><title>Experimental thermal and fluid science</title><description>Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electronic Microscope (SEM), and permeability of wicks is calculated by empirical equation. The effect of different sintering method, proportion of pore former, and sintering temperature on the wicks is investigated experimentally. Result shows that wicks are successfully fabricated, the optimal wicks are found to be sintered at 700
°C, using cold pressing sintering method, with pore former content 30% by volume; these wicks could reach the porosity of 77.40%, the permeability of 3.15
×
10
−13
m
2, and have sufficient mechanical strength to meet the machining requirements. The effect of lathing and wire electro discharge machining on surface pores of wick is analyzed by SEM. In order to verify the performance of the biporous wick, a flat plate type of LHP is designed, fabricated and tested in this paper, and the results presents that the LHP can startup and run reliably under different heat loads.</description><subject>Applied sciences</subject><subject>Biporous</subject><subject>Cold pressing</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Experiment</subject><subject>Heat pipes</subject><subject>Loop heat pipe</subject><subject>Loop heat pipes</subject><subject>Machining</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Porous wick</subject><subject>Radius</subject><subject>Scanning electron microscopy</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Wicks</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LAzEQxYMoWKvfYQ8KXnZNtrv5g16kWhUKXvS8JNkJTd1uYrKt-u1NaRE8KQwzh_nNe8ND6JzggmBCr5YFfPphAWFlunXUtigxIWlVYMwO0IhwJvKy5PQQjTAXVU4YY8foJMYlxpiXBI_Q9R1soHN-Bf2QOZMp611w65h9WP0WM-NCZjo55D41yDrnfLYAOWTeejhFR0Z2Ec72c4xeZ_cv08d8_vzwNL2d57oS5ZBzZlojq7ZUVIkKC9oqzlsMnCvBlFATBrhqhSoJJ1iBNkJKolouJ1RVVQ2TMbrc6frg3tcQh2Zlo4aukz2kVxtCGRM0Ff0bxQRzXhNGEnqzQ3VwMQYwjQ92JcNXgrYcbZbN73ibbbzbbYo3nV_snWTUsjNB9trGH42yrpMErRM323GQEtpYCE1Sgl5DawPooWmd_Z_hN2sYmYA</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Li, Huan</creator><creator>Liu, ZhiChun</creator><creator>Chen, BinBin</creator><creator>Liu, Wei</creator><creator>Li, Chen</creator><creator>Yang, Jinguo</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Development of biporous wicks for flat-plate loop heat pipe</title><author>Li, Huan ; Liu, ZhiChun ; Chen, BinBin ; Liu, Wei ; Li, Chen ; Yang, Jinguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Biporous</topic><topic>Cold pressing</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Experiment</topic><topic>Heat pipes</topic><topic>Loop heat pipe</topic><topic>Loop heat pipes</topic><topic>Machining</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Porous wick</topic><topic>Radius</topic><topic>Scanning electron microscopy</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Wicks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Liu, ZhiChun</creatorcontrib><creatorcontrib>Chen, BinBin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Yang, Jinguo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huan</au><au>Liu, ZhiChun</au><au>Chen, BinBin</au><au>Liu, Wei</au><au>Li, Chen</au><au>Yang, Jinguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of biporous wicks for flat-plate loop heat pipe</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>37</volume><spage>91</spage><epage>97</epage><pages>91-97</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>Two different methods, cold pressing sintering and loose powder sintering, are adopted to fabricate the biporous nickel wicks for loop heat pipes (LHPs) in the present study. Porosity of the wicks is measured by Archimedes method and radius and distribution of pores is observed by Scanning Electronic Microscope (SEM), and permeability of wicks is calculated by empirical equation. The effect of different sintering method, proportion of pore former, and sintering temperature on the wicks is investigated experimentally. Result shows that wicks are successfully fabricated, the optimal wicks are found to be sintered at 700
°C, using cold pressing sintering method, with pore former content 30% by volume; these wicks could reach the porosity of 77.40%, the permeability of 3.15
×
10
−13
m
2, and have sufficient mechanical strength to meet the machining requirements. The effect of lathing and wire electro discharge machining on surface pores of wick is analyzed by SEM. In order to verify the performance of the biporous wick, a flat plate type of LHP is designed, fabricated and tested in this paper, and the results presents that the LHP can startup and run reliably under different heat loads.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2011.10.007</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1777 |
ispartof | Experimental thermal and fluid science, 2012-02, Vol.37, p.91-97 |
issn | 0894-1777 1879-2286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677967966 |
source | ScienceDirect Journals |
subjects | Applied sciences Biporous Cold pressing Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Experiment Heat pipes Loop heat pipe Loop heat pipes Machining Permeability Porosity Porous wick Radius Scanning electron microscopy Sintering Sintering (powder metallurgy) Wicks |
title | Development of biporous wicks for flat-plate loop heat pipe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20biporous%20wicks%20for%20flat-plate%20loop%20heat%20pipe&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Li,%20Huan&rft.date=2012-02-01&rft.volume=37&rft.spage=91&rft.epage=97&rft.pages=91-97&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2011.10.007&rft_dat=%3Cproquest_cross%3E1677967966%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-87fdfa4d2b6b94096db88d0e88b97b9b37e04d9b21810becf9aa1bd8a36b445e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1010885171&rft_id=info:pmid/&rfr_iscdi=true |