Loading…
Novel techniques and an efficient algorithm for closed pattern mining
•Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect...
Saved in:
Published in: | Expert systems with applications 2014-09, Vol.41 (11), p.5105-5114 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63 |
container_end_page | 5114 |
container_issue | 11 |
container_start_page | 5105 |
container_title | Expert systems with applications |
container_volume | 41 |
creator | Király, András Laiho, Asta Abonyi, János Gyenesei, Attila |
description | •Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect the most meaningful patterns.•We offer a novel technique for visualization of biclustering results.
In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0–1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets. |
doi_str_mv | 10.1016/j.eswa.2014.02.029 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677972343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417414001055</els_id><sourcerecordid>1567056056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-AVfdCG5aXz6atOBGxC8YdKPrkKYvMxk67ZhUxX9vygwuFW5IFufdFw4h5xQKClRerQuMX6ZgQEUBLKU-IDNaKZ5LVfNDMoO6VLmgShyTkxjXAFQBqBm5ex4-sctGtKvev39gzEzfppOhc9567MfMdMsh-HG1ydwQMtsNEdtsa8YRQ59tfO_75Sk5cqaLeLa_5-Tt_u719jFfvDw83d4scstrOeZSNqKpQJkWGsdrlI47MNRJpZhMD6haFJRXJbBGyYYJ7pBWvLZScqGM5HNyuevdhmH67Kg3PlrsOtPj8BE1TU21Ylzw_9FSKihlSkLZDrVhiDGg09vgNyZ8awp60qvXetKrJ70aWEqdhi72_SZa07lgeuvj7ySrBK-YKBN3veMwefn0GHSctFpsfUA76nbwf635AV_yjxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567056056</pqid></control><display><type>article</type><title>Novel techniques and an efficient algorithm for closed pattern mining</title><source>ScienceDirect Freedom Collection</source><creator>Király, András ; Laiho, Asta ; Abonyi, János ; Gyenesei, Attila</creator><creatorcontrib>Király, András ; Laiho, Asta ; Abonyi, János ; Gyenesei, Attila</creatorcontrib><description>•Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect the most meaningful patterns.•We offer a novel technique for visualization of biclustering results.
In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0–1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2014.02.029</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Agglomeration ; Algorithms ; Applied sciences ; Biclustering ; Closed frequent itemset mining ; Clustering visualization ; Computer science; control theory; systems ; Data mining ; Data mining algorithm ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Expert systems ; Joining ; Memory organisation. Data processing ; Pattern analysis ; Pattern detection ; Software ; Uniqueness</subject><ispartof>Expert systems with applications, 2014-09, Vol.41 (11), p.5105-5114</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63</citedby><cites>FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438245$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Király, András</creatorcontrib><creatorcontrib>Laiho, Asta</creatorcontrib><creatorcontrib>Abonyi, János</creatorcontrib><creatorcontrib>Gyenesei, Attila</creatorcontrib><title>Novel techniques and an efficient algorithm for closed pattern mining</title><title>Expert systems with applications</title><description>•Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect the most meaningful patterns.•We offer a novel technique for visualization of biclustering results.
In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0–1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Biclustering</subject><subject>Closed frequent itemset mining</subject><subject>Clustering visualization</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Data mining algorithm</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Joining</subject><subject>Memory organisation. Data processing</subject><subject>Pattern analysis</subject><subject>Pattern detection</subject><subject>Software</subject><subject>Uniqueness</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-AVfdCG5aXz6atOBGxC8YdKPrkKYvMxk67ZhUxX9vygwuFW5IFufdFw4h5xQKClRerQuMX6ZgQEUBLKU-IDNaKZ5LVfNDMoO6VLmgShyTkxjXAFQBqBm5ex4-sctGtKvev39gzEzfppOhc9567MfMdMsh-HG1ydwQMtsNEdtsa8YRQ59tfO_75Sk5cqaLeLa_5-Tt_u719jFfvDw83d4scstrOeZSNqKpQJkWGsdrlI47MNRJpZhMD6haFJRXJbBGyYYJ7pBWvLZScqGM5HNyuevdhmH67Kg3PlrsOtPj8BE1TU21Ylzw_9FSKihlSkLZDrVhiDGg09vgNyZ8awp60qvXetKrJ70aWEqdhi72_SZa07lgeuvj7ySrBK-YKBN3veMwefn0GHSctFpsfUA76nbwf635AV_yjxg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Király, András</creator><creator>Laiho, Asta</creator><creator>Abonyi, János</creator><creator>Gyenesei, Attila</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Novel techniques and an efficient algorithm for closed pattern mining</title><author>Király, András ; Laiho, Asta ; Abonyi, János ; Gyenesei, Attila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Biclustering</topic><topic>Closed frequent itemset mining</topic><topic>Clustering visualization</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Data mining algorithm</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Joining</topic><topic>Memory organisation. Data processing</topic><topic>Pattern analysis</topic><topic>Pattern detection</topic><topic>Software</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Király, András</creatorcontrib><creatorcontrib>Laiho, Asta</creatorcontrib><creatorcontrib>Abonyi, János</creatorcontrib><creatorcontrib>Gyenesei, Attila</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Király, András</au><au>Laiho, Asta</au><au>Abonyi, János</au><au>Gyenesei, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel techniques and an efficient algorithm for closed pattern mining</atitle><jtitle>Expert systems with applications</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>41</volume><issue>11</issue><spage>5105</spage><epage>5114</epage><pages>5105-5114</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect the most meaningful patterns.•We offer a novel technique for visualization of biclustering results.
In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0–1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2014.02.029</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2014-09, Vol.41 (11), p.5105-5114 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677972343 |
source | ScienceDirect Freedom Collection |
subjects | Agglomeration Algorithms Applied sciences Biclustering Closed frequent itemset mining Clustering visualization Computer science control theory systems Data mining Data mining algorithm Data processing. List processing. Character string processing Exact sciences and technology Expert systems Joining Memory organisation. Data processing Pattern analysis Pattern detection Software Uniqueness |
title | Novel techniques and an efficient algorithm for closed pattern mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20techniques%20and%20an%20efficient%20algorithm%20for%20closed%20pattern%20mining&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Kir%C3%A1ly,%20Andr%C3%A1s&rft.date=2014-09-01&rft.volume=41&rft.issue=11&rft.spage=5105&rft.epage=5114&rft.pages=5105-5114&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2014.02.029&rft_dat=%3Cproquest_cross%3E1567056056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567056056&rft_id=info:pmid/&rfr_iscdi=true |