Loading…

Novel techniques and an efficient algorithm for closed pattern mining

•Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2014-09, Vol.41 (11), p.5105-5114
Main Authors: Király, András, Laiho, Asta, Abonyi, János, Gyenesei, Attila
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63
cites cdi_FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63
container_end_page 5114
container_issue 11
container_start_page 5105
container_title Expert systems with applications
container_volume 41
creator Király, András
Laiho, Asta
Abonyi, János
Gyenesei, Attila
description •Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect the most meaningful patterns.•We offer a novel technique for visualization of biclustering results. In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0–1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets.
doi_str_mv 10.1016/j.eswa.2014.02.029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677972343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417414001055</els_id><sourcerecordid>1567056056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-AVfdCG5aXz6atOBGxC8YdKPrkKYvMxk67ZhUxX9vygwuFW5IFufdFw4h5xQKClRerQuMX6ZgQEUBLKU-IDNaKZ5LVfNDMoO6VLmgShyTkxjXAFQBqBm5ex4-sctGtKvev39gzEzfppOhc9567MfMdMsh-HG1ydwQMtsNEdtsa8YRQ59tfO_75Sk5cqaLeLa_5-Tt_u719jFfvDw83d4scstrOeZSNqKpQJkWGsdrlI47MNRJpZhMD6haFJRXJbBGyYYJ7pBWvLZScqGM5HNyuevdhmH67Kg3PlrsOtPj8BE1TU21Ylzw_9FSKihlSkLZDrVhiDGg09vgNyZ8awp60qvXetKrJ70aWEqdhi72_SZa07lgeuvj7ySrBK-YKBN3veMwefn0GHSctFpsfUA76nbwf635AV_yjxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567056056</pqid></control><display><type>article</type><title>Novel techniques and an efficient algorithm for closed pattern mining</title><source>ScienceDirect Freedom Collection</source><creator>Király, András ; Laiho, Asta ; Abonyi, János ; Gyenesei, Attila</creator><creatorcontrib>Király, András ; Laiho, Asta ; Abonyi, János ; Gyenesei, Attila</creatorcontrib><description>•Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect the most meaningful patterns.•We offer a novel technique for visualization of biclustering results. In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0–1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2014.02.029</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Agglomeration ; Algorithms ; Applied sciences ; Biclustering ; Closed frequent itemset mining ; Clustering visualization ; Computer science; control theory; systems ; Data mining ; Data mining algorithm ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Expert systems ; Joining ; Memory organisation. Data processing ; Pattern analysis ; Pattern detection ; Software ; Uniqueness</subject><ispartof>Expert systems with applications, 2014-09, Vol.41 (11), p.5105-5114</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63</citedby><cites>FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28438245$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Király, András</creatorcontrib><creatorcontrib>Laiho, Asta</creatorcontrib><creatorcontrib>Abonyi, János</creatorcontrib><creatorcontrib>Gyenesei, Attila</creatorcontrib><title>Novel techniques and an efficient algorithm for closed pattern mining</title><title>Expert systems with applications</title><description>•Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect the most meaningful patterns.•We offer a novel technique for visualization of biclustering results. In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0–1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Biclustering</subject><subject>Closed frequent itemset mining</subject><subject>Clustering visualization</subject><subject>Computer science; control theory; systems</subject><subject>Data mining</subject><subject>Data mining algorithm</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Joining</subject><subject>Memory organisation. Data processing</subject><subject>Pattern analysis</subject><subject>Pattern detection</subject><subject>Software</subject><subject>Uniqueness</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-AVfdCG5aXz6atOBGxC8YdKPrkKYvMxk67ZhUxX9vygwuFW5IFufdFw4h5xQKClRerQuMX6ZgQEUBLKU-IDNaKZ5LVfNDMoO6VLmgShyTkxjXAFQBqBm5ex4-sctGtKvev39gzEzfppOhc9567MfMdMsh-HG1ydwQMtsNEdtsa8YRQ59tfO_75Sk5cqaLeLa_5-Tt_u719jFfvDw83d4scstrOeZSNqKpQJkWGsdrlI47MNRJpZhMD6haFJRXJbBGyYYJ7pBWvLZScqGM5HNyuevdhmH67Kg3PlrsOtPj8BE1TU21Ylzw_9FSKihlSkLZDrVhiDGg09vgNyZ8awp60qvXetKrJ70aWEqdhi72_SZa07lgeuvj7ySrBK-YKBN3veMwefn0GHSctFpsfUA76nbwf635AV_yjxg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Király, András</creator><creator>Laiho, Asta</creator><creator>Abonyi, János</creator><creator>Gyenesei, Attila</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140901</creationdate><title>Novel techniques and an efficient algorithm for closed pattern mining</title><author>Király, András ; Laiho, Asta ; Abonyi, János ; Gyenesei, Attila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Biclustering</topic><topic>Closed frequent itemset mining</topic><topic>Clustering visualization</topic><topic>Computer science; control theory; systems</topic><topic>Data mining</topic><topic>Data mining algorithm</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Joining</topic><topic>Memory organisation. Data processing</topic><topic>Pattern analysis</topic><topic>Pattern detection</topic><topic>Software</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Király, András</creatorcontrib><creatorcontrib>Laiho, Asta</creatorcontrib><creatorcontrib>Abonyi, János</creatorcontrib><creatorcontrib>Gyenesei, Attila</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Király, András</au><au>Laiho, Asta</au><au>Abonyi, János</au><au>Gyenesei, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel techniques and an efficient algorithm for closed pattern mining</atitle><jtitle>Expert systems with applications</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>41</volume><issue>11</issue><spage>5105</spage><epage>5114</epage><pages>5105-5114</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Frequent closed itemset mining and biclustering can be reduced to the same problem.•A new and efficient algorithm for mining frequent closed patterns is presented.•We introduce a unique approach to transform {-1,0,1}-type data into binary format.•We propose an original aggregation method to detect the most meaningful patterns.•We offer a novel technique for visualization of biclustering results. In this paper we show that frequent closed itemset mining and biclustering, the two most prominent application fields in pattern discovery, can be reduced to the same problem when dealing with binary (0–1) data. FCPMiner, a new powerful pattern mining method, is then introduced to mine such data efficiently. The uniqueness of the proposed method is its extendibility to non-binary data. The mining method is coupled with a novel visualization technique and a pattern aggregation method to detect the most meaningful, non-overlapping patterns. The proposed methods are rigorously tested on both synthetic and real data sets.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2014.02.029</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2014-09, Vol.41 (11), p.5105-5114
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1677972343
source ScienceDirect Freedom Collection
subjects Agglomeration
Algorithms
Applied sciences
Biclustering
Closed frequent itemset mining
Clustering visualization
Computer science
control theory
systems
Data mining
Data mining algorithm
Data processing. List processing. Character string processing
Exact sciences and technology
Expert systems
Joining
Memory organisation. Data processing
Pattern analysis
Pattern detection
Software
Uniqueness
title Novel techniques and an efficient algorithm for closed pattern mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20techniques%20and%20an%20efficient%20algorithm%20for%20closed%20pattern%20mining&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Kir%C3%A1ly,%20Andr%C3%A1s&rft.date=2014-09-01&rft.volume=41&rft.issue=11&rft.spage=5105&rft.epage=5114&rft.pages=5105-5114&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2014.02.029&rft_dat=%3Cproquest_cross%3E1567056056%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-66b4b807ad0bf39e6f3f0a1f677260a108de4138502b76b243fe1839c66347a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567056056&rft_id=info:pmid/&rfr_iscdi=true