Loading…

Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers

•Supervised learning lets LIBS identify organic traces located on polymer surfaces.•Classifiers capture nonlinear relationships between emissions and target nature.•False negative rate of 2% and false positive rate of 1% are reached.•Proposed approach offers better understanding than other chemometr...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2014-01, Vol.806, p.107-116
Main Authors: Serrano, Jorge, Moros, Javier, Sánchez, Carlos, Macías, Jorge, Laserna, J. Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-acccce86f71dca6f001765c00e3b21b554e17d3ee35de9ab4174a115675b41f03
cites cdi_FETCH-LOGICAL-c452t-acccce86f71dca6f001765c00e3b21b554e17d3ee35de9ab4174a115675b41f03
container_end_page 116
container_issue
container_start_page 107
container_title Analytica chimica acta
container_volume 806
creator Serrano, Jorge
Moros, Javier
Sánchez, Carlos
Macías, Jorge
Laserna, J. Javier
description •Supervised learning lets LIBS identify organic traces located on polymer surfaces.•Classifiers capture nonlinear relationships between emissions and target nature.•False negative rate of 2% and false positive rate of 1% are reached.•Proposed approach offers better understanding than other chemometric alternatives. The large similarity existing in the spectral emissions collected from organic compounds by laser-induced breakdown spectroscopy (LIBS) is a limiting factor for the use of this technology in the real world. Specifically, among the most ambitious challenges of today's LIBS involves the recognition of an organic residue when neglected on the surface of an object of identical nature. Under these circumstances, the development of an efficient algorithm to disclose the minute differences within this highly complex spectral information is crucial for a realistic application of LIBS in countering explosive threats. An approach cemented on scatter plots of characteristic emission features has been developed to identify organic explosives when located on polymeric surfaces (teflon, nylon and polyethylene). By using selected spectral variables, the approach allows to design a concise classifier for alerting when one of four explosives (DNT, TNT, RDX and PETN) is present on the surface of the polymer. Ordinary products (butter, fuel oil, hand cream, olive oil and motor oil) cause no confusion in the decisions taken by the classifier. With rates of false negatives and false positives below 5%, results demonstrate that the classification algorithm enables to label residues according to their harmful nature in the most demanding scenario for a LIBS sensor.
doi_str_mv 10.1016/j.aca.2013.11.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677975721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267013014542</els_id><sourcerecordid>1531032715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-acccce86f71dca6f001765c00e3b21b554e17d3ee35de9ab4174a115675b41f03</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERZfCD-CCcuSS4PHnrjiVio9KK3FoOVteZ1J5lY2Dnazaf8-kWzhSfJmvd15Z8zD2DngDHMzHfeODbwQH2QA0XOoXbAVrK2slhXrJVpxzWQtj-Tl7XcqeSgFcvWLnQklJmVmxdNke_RCwrTKGdDfEKaahSl2F92OfSjxiqeJQTdkHymg0pv7hgLkqc-4ee3OJw121vf58U_mhpf6I-RgLOfbo87AMQ-9LiV3EXN6ws873Bd8-xQv28-uX26vv9fbHt-ury20dlBZT7QM9XJvOQhu86TgHa3TgHOVOwE5rhWBbiSh1ixu_U2CVB9DGaso7Li_Yh5PvmNOvGcvkDrEE7Hs_YJqLA2Ptxmor4HmpVqC4Ecr-h5TOKoWl-KxUmY0As-bLB-AkDTmVkrFzY44Hnx8ccLeAdntHoN0C2gE4Ak0775_s590B278bf8iS4NNJgHTlI53elRBxIR2J9OTaFP9h_xv0yrhZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469216801</pqid></control><display><type>article</type><title>Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Serrano, Jorge ; Moros, Javier ; Sánchez, Carlos ; Macías, Jorge ; Laserna, J. Javier</creator><creatorcontrib>Serrano, Jorge ; Moros, Javier ; Sánchez, Carlos ; Macías, Jorge ; Laserna, J. Javier</creatorcontrib><description>•Supervised learning lets LIBS identify organic traces located on polymer surfaces.•Classifiers capture nonlinear relationships between emissions and target nature.•False negative rate of 2% and false positive rate of 1% are reached.•Proposed approach offers better understanding than other chemometric alternatives. The large similarity existing in the spectral emissions collected from organic compounds by laser-induced breakdown spectroscopy (LIBS) is a limiting factor for the use of this technology in the real world. Specifically, among the most ambitious challenges of today's LIBS involves the recognition of an organic residue when neglected on the surface of an object of identical nature. Under these circumstances, the development of an efficient algorithm to disclose the minute differences within this highly complex spectral information is crucial for a realistic application of LIBS in countering explosive threats. An approach cemented on scatter plots of characteristic emission features has been developed to identify organic explosives when located on polymeric surfaces (teflon, nylon and polyethylene). By using selected spectral variables, the approach allows to design a concise classifier for alerting when one of four explosives (DNT, TNT, RDX and PETN) is present on the surface of the polymer. Ordinary products (butter, fuel oil, hand cream, olive oil and motor oil) cause no confusion in the decisions taken by the classifier. With rates of false negatives and false positives below 5%, results demonstrate that the classification algorithm enables to label residues according to their harmful nature in the most demanding scenario for a LIBS sensor.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2013.11.035</identifier><identifier>PMID: 24331046</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Butter ; Classifiers ; Confusants ; Explosives ; Laser-induced breakdown spectroscopy ; Machine learning classifiers ; PETN ; Polymer surfaces ; Polytetrafluoroethylenes ; Residues ; Spectra</subject><ispartof>Analytica chimica acta, 2014-01, Vol.806, p.107-116</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-acccce86f71dca6f001765c00e3b21b554e17d3ee35de9ab4174a115675b41f03</citedby><cites>FETCH-LOGICAL-c452t-acccce86f71dca6f001765c00e3b21b554e17d3ee35de9ab4174a115675b41f03</cites><orcidid>0000-0002-3778-7885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24331046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serrano, Jorge</creatorcontrib><creatorcontrib>Moros, Javier</creatorcontrib><creatorcontrib>Sánchez, Carlos</creatorcontrib><creatorcontrib>Macías, Jorge</creatorcontrib><creatorcontrib>Laserna, J. Javier</creatorcontrib><title>Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>•Supervised learning lets LIBS identify organic traces located on polymer surfaces.•Classifiers capture nonlinear relationships between emissions and target nature.•False negative rate of 2% and false positive rate of 1% are reached.•Proposed approach offers better understanding than other chemometric alternatives. The large similarity existing in the spectral emissions collected from organic compounds by laser-induced breakdown spectroscopy (LIBS) is a limiting factor for the use of this technology in the real world. Specifically, among the most ambitious challenges of today's LIBS involves the recognition of an organic residue when neglected on the surface of an object of identical nature. Under these circumstances, the development of an efficient algorithm to disclose the minute differences within this highly complex spectral information is crucial for a realistic application of LIBS in countering explosive threats. An approach cemented on scatter plots of characteristic emission features has been developed to identify organic explosives when located on polymeric surfaces (teflon, nylon and polyethylene). By using selected spectral variables, the approach allows to design a concise classifier for alerting when one of four explosives (DNT, TNT, RDX and PETN) is present on the surface of the polymer. Ordinary products (butter, fuel oil, hand cream, olive oil and motor oil) cause no confusion in the decisions taken by the classifier. With rates of false negatives and false positives below 5%, results demonstrate that the classification algorithm enables to label residues according to their harmful nature in the most demanding scenario for a LIBS sensor.</description><subject>Algorithms</subject><subject>Butter</subject><subject>Classifiers</subject><subject>Confusants</subject><subject>Explosives</subject><subject>Laser-induced breakdown spectroscopy</subject><subject>Machine learning classifiers</subject><subject>PETN</subject><subject>Polymer surfaces</subject><subject>Polytetrafluoroethylenes</subject><subject>Residues</subject><subject>Spectra</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi1ERZfCD-CCcuSS4PHnrjiVio9KK3FoOVteZ1J5lY2Dnazaf8-kWzhSfJmvd15Z8zD2DngDHMzHfeODbwQH2QA0XOoXbAVrK2slhXrJVpxzWQtj-Tl7XcqeSgFcvWLnQklJmVmxdNke_RCwrTKGdDfEKaahSl2F92OfSjxiqeJQTdkHymg0pv7hgLkqc-4ee3OJw121vf58U_mhpf6I-RgLOfbo87AMQ-9LiV3EXN6ws873Bd8-xQv28-uX26vv9fbHt-ury20dlBZT7QM9XJvOQhu86TgHa3TgHOVOwE5rhWBbiSh1ixu_U2CVB9DGaso7Li_Yh5PvmNOvGcvkDrEE7Hs_YJqLA2Ptxmor4HmpVqC4Ecr-h5TOKoWl-KxUmY0As-bLB-AkDTmVkrFzY44Hnx8ccLeAdntHoN0C2gE4Ak0775_s590B278bf8iS4NNJgHTlI53elRBxIR2J9OTaFP9h_xv0yrhZ</recordid><startdate>20140102</startdate><enddate>20140102</enddate><creator>Serrano, Jorge</creator><creator>Moros, Javier</creator><creator>Sánchez, Carlos</creator><creator>Macías, Jorge</creator><creator>Laserna, J. Javier</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3778-7885</orcidid></search><sort><creationdate>20140102</creationdate><title>Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers</title><author>Serrano, Jorge ; Moros, Javier ; Sánchez, Carlos ; Macías, Jorge ; Laserna, J. Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-acccce86f71dca6f001765c00e3b21b554e17d3ee35de9ab4174a115675b41f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Butter</topic><topic>Classifiers</topic><topic>Confusants</topic><topic>Explosives</topic><topic>Laser-induced breakdown spectroscopy</topic><topic>Machine learning classifiers</topic><topic>PETN</topic><topic>Polymer surfaces</topic><topic>Polytetrafluoroethylenes</topic><topic>Residues</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serrano, Jorge</creatorcontrib><creatorcontrib>Moros, Javier</creatorcontrib><creatorcontrib>Sánchez, Carlos</creatorcontrib><creatorcontrib>Macías, Jorge</creatorcontrib><creatorcontrib>Laserna, J. Javier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serrano, Jorge</au><au>Moros, Javier</au><au>Sánchez, Carlos</au><au>Macías, Jorge</au><au>Laserna, J. Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2014-01-02</date><risdate>2014</risdate><volume>806</volume><spage>107</spage><epage>116</epage><pages>107-116</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>•Supervised learning lets LIBS identify organic traces located on polymer surfaces.•Classifiers capture nonlinear relationships between emissions and target nature.•False negative rate of 2% and false positive rate of 1% are reached.•Proposed approach offers better understanding than other chemometric alternatives. The large similarity existing in the spectral emissions collected from organic compounds by laser-induced breakdown spectroscopy (LIBS) is a limiting factor for the use of this technology in the real world. Specifically, among the most ambitious challenges of today's LIBS involves the recognition of an organic residue when neglected on the surface of an object of identical nature. Under these circumstances, the development of an efficient algorithm to disclose the minute differences within this highly complex spectral information is crucial for a realistic application of LIBS in countering explosive threats. An approach cemented on scatter plots of characteristic emission features has been developed to identify organic explosives when located on polymeric surfaces (teflon, nylon and polyethylene). By using selected spectral variables, the approach allows to design a concise classifier for alerting when one of four explosives (DNT, TNT, RDX and PETN) is present on the surface of the polymer. Ordinary products (butter, fuel oil, hand cream, olive oil and motor oil) cause no confusion in the decisions taken by the classifier. With rates of false negatives and false positives below 5%, results demonstrate that the classification algorithm enables to label residues according to their harmful nature in the most demanding scenario for a LIBS sensor.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24331046</pmid><doi>10.1016/j.aca.2013.11.035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3778-7885</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2014-01, Vol.806, p.107-116
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_1677975721
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Algorithms
Butter
Classifiers
Confusants
Explosives
Laser-induced breakdown spectroscopy
Machine learning classifiers
PETN
Polymer surfaces
Polytetrafluoroethylenes
Residues
Spectra
title Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20recognition%20of%20explosives%20in%20traces%20on%20polymer%20surfaces%20using%20LIBS%20and%20supervised%20learning%20classifiers&rft.jtitle=Analytica%20chimica%20acta&rft.au=Serrano,%20Jorge&rft.date=2014-01-02&rft.volume=806&rft.spage=107&rft.epage=116&rft.pages=107-116&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2013.11.035&rft_dat=%3Cproquest_cross%3E1531032715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-acccce86f71dca6f001765c00e3b21b554e17d3ee35de9ab4174a115675b41f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1469216801&rft_id=info:pmid/24331046&rfr_iscdi=true