Loading…

A robust method for calculating interface curvature and normal vectors using an extracted local level set

The level-set method is a popular interface tracking method in two-phase flow simulations. An often-cited reason for using it is that the method naturally handles topological changes in the interface, e.g. merging drops, due to the implicit formulation. It is also said that the interface curvature a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2014-01, Vol.257, p.259-277
Main Authors: Ervik, Åsmund, Lervåg, Karl Yngve, Munkejord, Svend Tollak
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The level-set method is a popular interface tracking method in two-phase flow simulations. An often-cited reason for using it is that the method naturally handles topological changes in the interface, e.g. merging drops, due to the implicit formulation. It is also said that the interface curvature and normal vectors are easily calculated. This last point is not, however, the case in the moments during a topological change, as several authors have already pointed out. Various methods have been employed to circumvent the problem. In this paper, we present a new such method which retains the implicit level-set representation of the surface and handles general interface configurations. It is demonstrated that the method extends easily to 3D. The method is validated on static interface configurations, and then applied to two-phase flow simulations where the method outperforms the standard method and the results agree well with experiments.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2013.09.053