Loading…
CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors
•We derive subgrid corrections for coarse-grid simulations of HDPE fluidized beds.•These corrections account for polydispersity of high density polyethylene (HDPE).•These corrections are validated by a lab-scale experiment.•The model is applied to an industrial scale fluidized-moving bed reactor ass...
Saved in:
Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2015-03, Vol.264, p.99-112 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-397443dd642f3dc85db3a8e9b8417c21b1ff830da7cf49e9e55d7027b52800883 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-397443dd642f3dc85db3a8e9b8417c21b1ff830da7cf49e9e55d7027b52800883 |
container_end_page | 112 |
container_issue | |
container_start_page | 99 |
container_title | Chemical engineering journal (Lausanne, Switzerland : 1996) |
container_volume | 264 |
creator | Schneiderbauer, Simon Puttinger, Stefan Pirker, Stefan Aguayo, Pablo Kanellopoulos, Vasileios |
description | •We derive subgrid corrections for coarse-grid simulations of HDPE fluidized beds.•These corrections account for polydispersity of high density polyethylene (HDPE).•These corrections are validated by a lab-scale experiment.•The model is applied to an industrial scale fluidized-moving bed reactor assembly.•The results discusses the separation of the reaction gases between both reactors.
A two-fluid model for the numerical simulation of industrial scale olefin polymerization fluidized bed reactors is presented. However, a fully resolved simulation of industrial scale reactor is still nearly unfeasible. We, therefore, use sub-grid models (Schneiderbauer and Pirker, 2014) for the interphase drag and the solids stresses to account for the effect of the small unresolved structures on large resolved scales when using coarse grids. The sub-grid correction for the drag force is modified to consider the wide particle size distribution of high density polyethylene (HDPE). Furthermore, the sub-grid modification for the solids stresses is adapted to include the rheological properties of the polymer. On the one hand, the presented model is validated in the case of the coarse grid simulation of lab-scale bubbling fluidized bed by comparing bed expansion, bubble size and bubble rise velocities with experimental data. On the other hand, the model is applied to the coarse grid simulation of an industrial scale fluidized bed – moving bed reactor assembly. The numerical results demonstrate that our model reveals fairly good agreement with experimental data of average bed voidage, bubble diameters and bubble rise velocities. Finally, the impact of a barrier gas injection is studied, which is aimed to separate the fluidization gas from the gas in the moving bed reactor. |
doi_str_mv | 10.1016/j.cej.2014.11.058 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677980377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894714015174</els_id><sourcerecordid>1677980377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-397443dd642f3dc85db3a8e9b8417c21b1ff830da7cf49e9e55d7027b52800883</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhosouK4-gLccvbRmmrZJ8SSrq8KCF70JIU0mkiVt1qQV1qe3y3r2MPxz-P6B-bLsGmgBFJrbbaFxW5QUqgKgoLU4yRYgOMtZCeXpvDNR56Kt-Hl2kdKWUtq00C6yj9X6gfTBoHfDJ1GDIcn1k1ejCwMJlrjBTGmMTnmStPJIgkfrBrILft9jdD9H0vrJGfeDhnTzRFR6DDFdZmdW-YRXf7nM3tePb6vnfPP69LK63-SaNXzMWcurihnTVKVlRovadEwJbDtRAdcldGCtYNQorm3VYot1bTgteVeXglIh2DK7Od7dxfA1YRpl75JG79WAYUoSGs5bQRnnMwpHVMeQUkQrd9H1Ku4lUHkwKbdyNikPJiWAnE3OnbtjB-cfvh1GmbTDQaNxEfUoTXD_tH8Btf98jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677980377</pqid></control><display><type>article</type><title>CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Schneiderbauer, Simon ; Puttinger, Stefan ; Pirker, Stefan ; Aguayo, Pablo ; Kanellopoulos, Vasileios</creator><creatorcontrib>Schneiderbauer, Simon ; Puttinger, Stefan ; Pirker, Stefan ; Aguayo, Pablo ; Kanellopoulos, Vasileios</creatorcontrib><description>•We derive subgrid corrections for coarse-grid simulations of HDPE fluidized beds.•These corrections account for polydispersity of high density polyethylene (HDPE).•These corrections are validated by a lab-scale experiment.•The model is applied to an industrial scale fluidized-moving bed reactor assembly.•The results discusses the separation of the reaction gases between both reactors.
A two-fluid model for the numerical simulation of industrial scale olefin polymerization fluidized bed reactors is presented. However, a fully resolved simulation of industrial scale reactor is still nearly unfeasible. We, therefore, use sub-grid models (Schneiderbauer and Pirker, 2014) for the interphase drag and the solids stresses to account for the effect of the small unresolved structures on large resolved scales when using coarse grids. The sub-grid correction for the drag force is modified to consider the wide particle size distribution of high density polyethylene (HDPE). Furthermore, the sub-grid modification for the solids stresses is adapted to include the rheological properties of the polymer. On the one hand, the presented model is validated in the case of the coarse grid simulation of lab-scale bubbling fluidized bed by comparing bed expansion, bubble size and bubble rise velocities with experimental data. On the other hand, the model is applied to the coarse grid simulation of an industrial scale fluidized bed – moving bed reactor assembly. The numerical results demonstrate that our model reveals fairly good agreement with experimental data of average bed voidage, bubble diameters and bubble rise velocities. Finally, the impact of a barrier gas injection is studied, which is aimed to separate the fluidization gas from the gas in the moving bed reactor.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2014.11.058</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bubbles ; Bubbling fluidized bed ; Coarse grid simulation ; Computer simulation ; Fluidized beds ; High density polyethylene ; Industrial scale application ; Mathematical models ; Moving bed ; Polyethylenes ; Polymerization ; Reactors ; Scale (ratio) ; Two-fluid model</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2015-03, Vol.264, p.99-112</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-397443dd642f3dc85db3a8e9b8417c21b1ff830da7cf49e9e55d7027b52800883</citedby><cites>FETCH-LOGICAL-c367t-397443dd642f3dc85db3a8e9b8417c21b1ff830da7cf49e9e55d7027b52800883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Schneiderbauer, Simon</creatorcontrib><creatorcontrib>Puttinger, Stefan</creatorcontrib><creatorcontrib>Pirker, Stefan</creatorcontrib><creatorcontrib>Aguayo, Pablo</creatorcontrib><creatorcontrib>Kanellopoulos, Vasileios</creatorcontrib><title>CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>•We derive subgrid corrections for coarse-grid simulations of HDPE fluidized beds.•These corrections account for polydispersity of high density polyethylene (HDPE).•These corrections are validated by a lab-scale experiment.•The model is applied to an industrial scale fluidized-moving bed reactor assembly.•The results discusses the separation of the reaction gases between both reactors.
A two-fluid model for the numerical simulation of industrial scale olefin polymerization fluidized bed reactors is presented. However, a fully resolved simulation of industrial scale reactor is still nearly unfeasible. We, therefore, use sub-grid models (Schneiderbauer and Pirker, 2014) for the interphase drag and the solids stresses to account for the effect of the small unresolved structures on large resolved scales when using coarse grids. The sub-grid correction for the drag force is modified to consider the wide particle size distribution of high density polyethylene (HDPE). Furthermore, the sub-grid modification for the solids stresses is adapted to include the rheological properties of the polymer. On the one hand, the presented model is validated in the case of the coarse grid simulation of lab-scale bubbling fluidized bed by comparing bed expansion, bubble size and bubble rise velocities with experimental data. On the other hand, the model is applied to the coarse grid simulation of an industrial scale fluidized bed – moving bed reactor assembly. The numerical results demonstrate that our model reveals fairly good agreement with experimental data of average bed voidage, bubble diameters and bubble rise velocities. Finally, the impact of a barrier gas injection is studied, which is aimed to separate the fluidization gas from the gas in the moving bed reactor.</description><subject>Bubbles</subject><subject>Bubbling fluidized bed</subject><subject>Coarse grid simulation</subject><subject>Computer simulation</subject><subject>Fluidized beds</subject><subject>High density polyethylene</subject><subject>Industrial scale application</subject><subject>Mathematical models</subject><subject>Moving bed</subject><subject>Polyethylenes</subject><subject>Polymerization</subject><subject>Reactors</subject><subject>Scale (ratio)</subject><subject>Two-fluid model</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhosouK4-gLccvbRmmrZJ8SSrq8KCF70JIU0mkiVt1qQV1qe3y3r2MPxz-P6B-bLsGmgBFJrbbaFxW5QUqgKgoLU4yRYgOMtZCeXpvDNR56Kt-Hl2kdKWUtq00C6yj9X6gfTBoHfDJ1GDIcn1k1ejCwMJlrjBTGmMTnmStPJIgkfrBrILft9jdD9H0vrJGfeDhnTzRFR6DDFdZmdW-YRXf7nM3tePb6vnfPP69LK63-SaNXzMWcurihnTVKVlRovadEwJbDtRAdcldGCtYNQorm3VYot1bTgteVeXglIh2DK7Od7dxfA1YRpl75JG79WAYUoSGs5bQRnnMwpHVMeQUkQrd9H1Ku4lUHkwKbdyNikPJiWAnE3OnbtjB-cfvh1GmbTDQaNxEfUoTXD_tH8Btf98jA</recordid><startdate>20150315</startdate><enddate>20150315</enddate><creator>Schneiderbauer, Simon</creator><creator>Puttinger, Stefan</creator><creator>Pirker, Stefan</creator><creator>Aguayo, Pablo</creator><creator>Kanellopoulos, Vasileios</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150315</creationdate><title>CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors</title><author>Schneiderbauer, Simon ; Puttinger, Stefan ; Pirker, Stefan ; Aguayo, Pablo ; Kanellopoulos, Vasileios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-397443dd642f3dc85db3a8e9b8417c21b1ff830da7cf49e9e55d7027b52800883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bubbles</topic><topic>Bubbling fluidized bed</topic><topic>Coarse grid simulation</topic><topic>Computer simulation</topic><topic>Fluidized beds</topic><topic>High density polyethylene</topic><topic>Industrial scale application</topic><topic>Mathematical models</topic><topic>Moving bed</topic><topic>Polyethylenes</topic><topic>Polymerization</topic><topic>Reactors</topic><topic>Scale (ratio)</topic><topic>Two-fluid model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneiderbauer, Simon</creatorcontrib><creatorcontrib>Puttinger, Stefan</creatorcontrib><creatorcontrib>Pirker, Stefan</creatorcontrib><creatorcontrib>Aguayo, Pablo</creatorcontrib><creatorcontrib>Kanellopoulos, Vasileios</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneiderbauer, Simon</au><au>Puttinger, Stefan</au><au>Pirker, Stefan</au><au>Aguayo, Pablo</au><au>Kanellopoulos, Vasileios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2015-03-15</date><risdate>2015</risdate><volume>264</volume><spage>99</spage><epage>112</epage><pages>99-112</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>•We derive subgrid corrections for coarse-grid simulations of HDPE fluidized beds.•These corrections account for polydispersity of high density polyethylene (HDPE).•These corrections are validated by a lab-scale experiment.•The model is applied to an industrial scale fluidized-moving bed reactor assembly.•The results discusses the separation of the reaction gases between both reactors.
A two-fluid model for the numerical simulation of industrial scale olefin polymerization fluidized bed reactors is presented. However, a fully resolved simulation of industrial scale reactor is still nearly unfeasible. We, therefore, use sub-grid models (Schneiderbauer and Pirker, 2014) for the interphase drag and the solids stresses to account for the effect of the small unresolved structures on large resolved scales when using coarse grids. The sub-grid correction for the drag force is modified to consider the wide particle size distribution of high density polyethylene (HDPE). Furthermore, the sub-grid modification for the solids stresses is adapted to include the rheological properties of the polymer. On the one hand, the presented model is validated in the case of the coarse grid simulation of lab-scale bubbling fluidized bed by comparing bed expansion, bubble size and bubble rise velocities with experimental data. On the other hand, the model is applied to the coarse grid simulation of an industrial scale fluidized bed – moving bed reactor assembly. The numerical results demonstrate that our model reveals fairly good agreement with experimental data of average bed voidage, bubble diameters and bubble rise velocities. Finally, the impact of a barrier gas injection is studied, which is aimed to separate the fluidization gas from the gas in the moving bed reactor.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2014.11.058</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-8947 |
ispartof | Chemical engineering journal (Lausanne, Switzerland : 1996), 2015-03, Vol.264, p.99-112 |
issn | 1385-8947 1873-3212 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677980377 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Bubbles Bubbling fluidized bed Coarse grid simulation Computer simulation Fluidized beds High density polyethylene Industrial scale application Mathematical models Moving bed Polyethylenes Polymerization Reactors Scale (ratio) Two-fluid model |
title | CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20modeling%20and%20simulation%20of%20industrial%20scale%20olefin%20polymerization%20fluidized%20bed%20reactors&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Schneiderbauer,%20Simon&rft.date=2015-03-15&rft.volume=264&rft.spage=99&rft.epage=112&rft.pages=99-112&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2014.11.058&rft_dat=%3Cproquest_cross%3E1677980377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-397443dd642f3dc85db3a8e9b8417c21b1ff830da7cf49e9e55d7027b52800883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1677980377&rft_id=info:pmid/&rfr_iscdi=true |