Loading…
A swept-intersection-based remapping method in a ReALE framework
SUMMARY A complete reconnection‐based arbitrary Lagrangian–Eulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity b...
Saved in:
Published in: | International journal for numerical methods in fluids 2013-06, Vol.72 (6), p.697-708 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3973-94eeeccb9a4effe808957c47a7feee4b468a53d27887d71cc42f7344cd5311203 |
---|---|
cites | cdi_FETCH-LOGICAL-c3973-94eeeccb9a4effe808957c47a7feee4b468a53d27887d71cc42f7344cd5311203 |
container_end_page | 708 |
container_issue | 6 |
container_start_page | 697 |
container_title | International journal for numerical methods in fluids |
container_volume | 72 |
creator | Harribey, Thibault Breil, Jérôme Maire, Pierre-Henri Shashkov, Mikhail |
description | SUMMARY
A complete reconnection‐based arbitrary Lagrangian–Eulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based. The new method is called swept‐intersection‐based remapping method. We demonstrate that our method can be applied to several numerical examples representative of hydrodynamic experiments.Copyright © 2012 John Wiley & Sons, Ltd.
In this work, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to the ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based method. The new method used here is called swept‐intersection‐based remapping method. |
doi_str_mv | 10.1002/fld.3763 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677981909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677981909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3973-94eeeccb9a4effe808957c47a7feee4b468a53d27887d71cc42f7344cd5311203</originalsourceid><addsrcrecordid>eNqF0EtLxDAQB_AgCq4P8CMUvHjpmnTSJrm5rK6voiDKegvZdKrVvky6rH57WxRRQTzNYX7M40_IHqNjRml0mJfZGEQCa2TEqBIhhQTWyYhGgoURVWyTbHn_RClVkYQROZoEfoVtFxZ1h86j7YqmDhfGYxY4rEzbFvVDUGH32GRBUQcmuMFJehLkzlS4atzzDtnITelx97Nuk7vZye30LEyvT8-nkzS0oASEiiOitQtlOOY5SipVLCwXRuR9gy94Ik0MWSSkFJlg1vIoF8C5zWJgLKKwTQ4-5raueVmi73RVeItlaWpsll6zRAglmaLqf8qHkxjAMHX_F31qlq7uH9EMuBSxAvptt3WN9w5z3bqiMu5NM6qH1HWfuh5S72n4QVdFiW9_Oj1Lj3_6wnf4-uWNe9aJABHr-dWpVvfTq4v5pdRzeAfZlZAl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348759300</pqid></control><display><type>article</type><title>A swept-intersection-based remapping method in a ReALE framework</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Harribey, Thibault ; Breil, Jérôme ; Maire, Pierre-Henri ; Shashkov, Mikhail</creator><creatorcontrib>Harribey, Thibault ; Breil, Jérôme ; Maire, Pierre-Henri ; Shashkov, Mikhail</creatorcontrib><description>SUMMARY
A complete reconnection‐based arbitrary Lagrangian–Eulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based. The new method is called swept‐intersection‐based remapping method. We demonstrate that our method can be applied to several numerical examples representative of hydrodynamic experiments.Copyright © 2012 John Wiley & Sons, Ltd.
In this work, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to the ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based method. The new method used here is called swept‐intersection‐based remapping method.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.3763</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>cell-centered scheme ; Computational fluid dynamics ; Fluid flow ; Hydrodynamics ; Lagrangian hydrodynamics ; Mathematical models ; Optimization ; Phase transformations ; polygonal mesh ; ReALE ; Strategy ; Voronoi mesh ; Vorticity</subject><ispartof>International journal for numerical methods in fluids, 2013-06, Vol.72 (6), p.697-708</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3973-94eeeccb9a4effe808957c47a7feee4b468a53d27887d71cc42f7344cd5311203</citedby><cites>FETCH-LOGICAL-c3973-94eeeccb9a4effe808957c47a7feee4b468a53d27887d71cc42f7344cd5311203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Harribey, Thibault</creatorcontrib><creatorcontrib>Breil, Jérôme</creatorcontrib><creatorcontrib>Maire, Pierre-Henri</creatorcontrib><creatorcontrib>Shashkov, Mikhail</creatorcontrib><title>A swept-intersection-based remapping method in a ReALE framework</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY
A complete reconnection‐based arbitrary Lagrangian–Eulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based. The new method is called swept‐intersection‐based remapping method. We demonstrate that our method can be applied to several numerical examples representative of hydrodynamic experiments.Copyright © 2012 John Wiley & Sons, Ltd.
In this work, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to the ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based method. The new method used here is called swept‐intersection‐based remapping method.</description><subject>cell-centered scheme</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Lagrangian hydrodynamics</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Phase transformations</subject><subject>polygonal mesh</subject><subject>ReALE</subject><subject>Strategy</subject><subject>Voronoi mesh</subject><subject>Vorticity</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLxDAQB_AgCq4P8CMUvHjpmnTSJrm5rK6voiDKegvZdKrVvky6rH57WxRRQTzNYX7M40_IHqNjRml0mJfZGEQCa2TEqBIhhQTWyYhGgoURVWyTbHn_RClVkYQROZoEfoVtFxZ1h86j7YqmDhfGYxY4rEzbFvVDUGH32GRBUQcmuMFJehLkzlS4atzzDtnITelx97Nuk7vZye30LEyvT8-nkzS0oASEiiOitQtlOOY5SipVLCwXRuR9gy94Ik0MWSSkFJlg1vIoF8C5zWJgLKKwTQ4-5raueVmi73RVeItlaWpsll6zRAglmaLqf8qHkxjAMHX_F31qlq7uH9EMuBSxAvptt3WN9w5z3bqiMu5NM6qH1HWfuh5S72n4QVdFiW9_Oj1Lj3_6wnf4-uWNe9aJABHr-dWpVvfTq4v5pdRzeAfZlZAl</recordid><startdate>20130630</startdate><enddate>20130630</enddate><creator>Harribey, Thibault</creator><creator>Breil, Jérôme</creator><creator>Maire, Pierre-Henri</creator><creator>Shashkov, Mikhail</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130630</creationdate><title>A swept-intersection-based remapping method in a ReALE framework</title><author>Harribey, Thibault ; Breil, Jérôme ; Maire, Pierre-Henri ; Shashkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3973-94eeeccb9a4effe808957c47a7feee4b468a53d27887d71cc42f7344cd5311203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>cell-centered scheme</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Lagrangian hydrodynamics</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Phase transformations</topic><topic>polygonal mesh</topic><topic>ReALE</topic><topic>Strategy</topic><topic>Voronoi mesh</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harribey, Thibault</creatorcontrib><creatorcontrib>Breil, Jérôme</creatorcontrib><creatorcontrib>Maire, Pierre-Henri</creatorcontrib><creatorcontrib>Shashkov, Mikhail</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harribey, Thibault</au><au>Breil, Jérôme</au><au>Maire, Pierre-Henri</au><au>Shashkov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A swept-intersection-based remapping method in a ReALE framework</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2013-06-30</date><risdate>2013</risdate><volume>72</volume><issue>6</issue><spage>697</spage><epage>708</epage><pages>697-708</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY
A complete reconnection‐based arbitrary Lagrangian–Eulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based. The new method is called swept‐intersection‐based remapping method. We demonstrate that our method can be applied to several numerical examples representative of hydrodynamic experiments.Copyright © 2012 John Wiley & Sons, Ltd.
In this work, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to the ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based method. The new method used here is called swept‐intersection‐based remapping method.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/fld.3763</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2013-06, Vol.72 (6), p.697-708 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677981909 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | cell-centered scheme Computational fluid dynamics Fluid flow Hydrodynamics Lagrangian hydrodynamics Mathematical models Optimization Phase transformations polygonal mesh ReALE Strategy Voronoi mesh Vorticity |
title | A swept-intersection-based remapping method in a ReALE framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20swept-intersection-based%20remapping%20method%20in%20a%20ReALE%20framework&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Harribey,%20Thibault&rft.date=2013-06-30&rft.volume=72&rft.issue=6&rft.spage=697&rft.epage=708&rft.pages=697-708&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.3763&rft_dat=%3Cproquest_cross%3E1677981909%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3973-94eeeccb9a4effe808957c47a7feee4b468a53d27887d71cc42f7344cd5311203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1348759300&rft_id=info:pmid/&rfr_iscdi=true |