Loading…
A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries
Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some m...
Saved in:
Published in: | Electrochimica acta 2014-03, Vol.121, p.328-336 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153 |
container_end_page | 336 |
container_issue | |
container_start_page | 328 |
container_title | Electrochimica acta |
container_volume | 121 |
creator | Liu, H.Y. Liu, L.L. Yang, C.L. Li, Z.H. Xiao, Q.Z. Lei, G.T. Ding, Y.H. |
description | Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38×10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85kJmol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries. |
doi_str_mv | 10.1016/j.electacta.2014.01.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677982225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861400067X</els_id><sourcerecordid>1551091982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153</originalsourceid><addsrcrecordid>eNqNUcFqGzEUFKGFumm_oTr2sq7eSivtHk1om0Kgl9yFLL3FMlprI8kF_31f4pJrAwOSHjPD0wxjX0BsQYD-dtxiQt8cYdsLUFsBBHnDNjAa2clxmN6xjaBRp_SoP7CPtR6FEEYbsWHrjh9cCV3DZU2uIV9L9lgrb5muuLqCvB0KYhfigqca88mldOGL8yWvueRz5WtOlwULf9mj0INs5lx4iu0Qz0tHGr53rWGJWD-x97NLFT__O2_Z44_vj3f33cPvn7_udg-dVwO0Tiqlp3EcBuFm6EMPWoGh4Tj1s99LUOBnbfQsJ48qOLGXe2m8V70LIcAgb9nXqy395-mMtdklVo8puRPSzha0MdPY9_0bqIM2IClq8QbqAGICMiaquVIpp1oLznYtcXHlYkHY5-Ls0b4WZ5-LswIIkpS7qxIpnj8Ri60-4sljiIX4NuT4X4-_9XKnJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551091982</pqid></control><display><type>article</type><title>A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries</title><source>ScienceDirect Freedom Collection</source><creator>Liu, H.Y. ; Liu, L.L. ; Yang, C.L. ; Li, Z.H. ; Xiao, Q.Z. ; Lei, G.T. ; Ding, Y.H.</creator><creatorcontrib>Liu, H.Y. ; Liu, L.L. ; Yang, C.L. ; Li, Z.H. ; Xiao, Q.Z. ; Lei, G.T. ; Ding, Y.H.</creatorcontrib><description>Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38×10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85kJmol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2014.01.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Calcium carbonate ; Channels ; Electrolytes ; Etching ; Hard template ; Leaves ; Lithium batteries ; Lithium-ion batteries ; Membranes ; Polymer electrolyte ; Resultants ; Three-dimensionally macroporous ; Transportation</subject><ispartof>Electrochimica acta, 2014-03, Vol.121, p.328-336</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153</citedby><cites>FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, H.Y.</creatorcontrib><creatorcontrib>Liu, L.L.</creatorcontrib><creatorcontrib>Yang, C.L.</creatorcontrib><creatorcontrib>Li, Z.H.</creatorcontrib><creatorcontrib>Xiao, Q.Z.</creatorcontrib><creatorcontrib>Lei, G.T.</creatorcontrib><creatorcontrib>Ding, Y.H.</creatorcontrib><title>A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries</title><title>Electrochimica acta</title><description>Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38×10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85kJmol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries.</description><subject>Calcium carbonate</subject><subject>Channels</subject><subject>Electrolytes</subject><subject>Etching</subject><subject>Hard template</subject><subject>Leaves</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Membranes</subject><subject>Polymer electrolyte</subject><subject>Resultants</subject><subject>Three-dimensionally macroporous</subject><subject>Transportation</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUcFqGzEUFKGFumm_oTr2sq7eSivtHk1om0Kgl9yFLL3FMlprI8kF_31f4pJrAwOSHjPD0wxjX0BsQYD-dtxiQt8cYdsLUFsBBHnDNjAa2clxmN6xjaBRp_SoP7CPtR6FEEYbsWHrjh9cCV3DZU2uIV9L9lgrb5muuLqCvB0KYhfigqca88mldOGL8yWvueRz5WtOlwULf9mj0INs5lx4iu0Qz0tHGr53rWGJWD-x97NLFT__O2_Z44_vj3f33cPvn7_udg-dVwO0Tiqlp3EcBuFm6EMPWoGh4Tj1s99LUOBnbfQsJ48qOLGXe2m8V70LIcAgb9nXqy395-mMtdklVo8puRPSzha0MdPY9_0bqIM2IClq8QbqAGICMiaquVIpp1oLznYtcXHlYkHY5-Ls0b4WZ5-LswIIkpS7qxIpnj8Ri60-4sljiIX4NuT4X4-_9XKnJQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Liu, H.Y.</creator><creator>Liu, L.L.</creator><creator>Yang, C.L.</creator><creator>Li, Z.H.</creator><creator>Xiao, Q.Z.</creator><creator>Lei, G.T.</creator><creator>Ding, Y.H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries</title><author>Liu, H.Y. ; Liu, L.L. ; Yang, C.L. ; Li, Z.H. ; Xiao, Q.Z. ; Lei, G.T. ; Ding, Y.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calcium carbonate</topic><topic>Channels</topic><topic>Electrolytes</topic><topic>Etching</topic><topic>Hard template</topic><topic>Leaves</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Membranes</topic><topic>Polymer electrolyte</topic><topic>Resultants</topic><topic>Three-dimensionally macroporous</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, H.Y.</creatorcontrib><creatorcontrib>Liu, L.L.</creatorcontrib><creatorcontrib>Yang, C.L.</creatorcontrib><creatorcontrib>Li, Z.H.</creatorcontrib><creatorcontrib>Xiao, Q.Z.</creatorcontrib><creatorcontrib>Lei, G.T.</creatorcontrib><creatorcontrib>Ding, Y.H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, H.Y.</au><au>Liu, L.L.</au><au>Yang, C.L.</au><au>Li, Z.H.</au><au>Xiao, Q.Z.</au><au>Lei, G.T.</au><au>Ding, Y.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>121</volume><spage>328</spage><epage>336</epage><pages>328-336</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38×10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85kJmol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2014.01.013</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2014-03, Vol.121, p.328-336 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677982225 |
source | ScienceDirect Freedom Collection |
subjects | Calcium carbonate Channels Electrolytes Etching Hard template Leaves Lithium batteries Lithium-ion batteries Membranes Polymer electrolyte Resultants Three-dimensionally macroporous Transportation |
title | A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hard-template%20process%20to%20prepare%20three-dimensionally%20macroporous%20polymer%20electrolyte%20for%20lithium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Liu,%20H.Y.&rft.date=2014-03-01&rft.volume=121&rft.spage=328&rft.epage=336&rft.pages=328-336&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2014.01.013&rft_dat=%3Cproquest_cross%3E1551091982%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551091982&rft_id=info:pmid/&rfr_iscdi=true |