Loading…

A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries

Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some m...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2014-03, Vol.121, p.328-336
Main Authors: Liu, H.Y., Liu, L.L., Yang, C.L., Li, Z.H., Xiao, Q.Z., Lei, G.T., Ding, Y.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153
cites cdi_FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153
container_end_page 336
container_issue
container_start_page 328
container_title Electrochimica acta
container_volume 121
creator Liu, H.Y.
Liu, L.L.
Yang, C.L.
Li, Z.H.
Xiao, Q.Z.
Lei, G.T.
Ding, Y.H.
description Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38×10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85kJmol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries.
doi_str_mv 10.1016/j.electacta.2014.01.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677982225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861400067X</els_id><sourcerecordid>1551091982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153</originalsourceid><addsrcrecordid>eNqNUcFqGzEUFKGFumm_oTr2sq7eSivtHk1om0Kgl9yFLL3FMlprI8kF_31f4pJrAwOSHjPD0wxjX0BsQYD-dtxiQt8cYdsLUFsBBHnDNjAa2clxmN6xjaBRp_SoP7CPtR6FEEYbsWHrjh9cCV3DZU2uIV9L9lgrb5muuLqCvB0KYhfigqca88mldOGL8yWvueRz5WtOlwULf9mj0INs5lx4iu0Qz0tHGr53rWGJWD-x97NLFT__O2_Z44_vj3f33cPvn7_udg-dVwO0Tiqlp3EcBuFm6EMPWoGh4Tj1s99LUOBnbfQsJ48qOLGXe2m8V70LIcAgb9nXqy395-mMtdklVo8puRPSzha0MdPY9_0bqIM2IClq8QbqAGICMiaquVIpp1oLznYtcXHlYkHY5-Ls0b4WZ5-LswIIkpS7qxIpnj8Ri60-4sljiIX4NuT4X4-_9XKnJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551091982</pqid></control><display><type>article</type><title>A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries</title><source>ScienceDirect Freedom Collection</source><creator>Liu, H.Y. ; Liu, L.L. ; Yang, C.L. ; Li, Z.H. ; Xiao, Q.Z. ; Lei, G.T. ; Ding, Y.H.</creator><creatorcontrib>Liu, H.Y. ; Liu, L.L. ; Yang, C.L. ; Li, Z.H. ; Xiao, Q.Z. ; Lei, G.T. ; Ding, Y.H.</creatorcontrib><description>Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38×10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85kJmol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2014.01.013</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Calcium carbonate ; Channels ; Electrolytes ; Etching ; Hard template ; Leaves ; Lithium batteries ; Lithium-ion batteries ; Membranes ; Polymer electrolyte ; Resultants ; Three-dimensionally macroporous ; Transportation</subject><ispartof>Electrochimica acta, 2014-03, Vol.121, p.328-336</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153</citedby><cites>FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, H.Y.</creatorcontrib><creatorcontrib>Liu, L.L.</creatorcontrib><creatorcontrib>Yang, C.L.</creatorcontrib><creatorcontrib>Li, Z.H.</creatorcontrib><creatorcontrib>Xiao, Q.Z.</creatorcontrib><creatorcontrib>Lei, G.T.</creatorcontrib><creatorcontrib>Ding, Y.H.</creatorcontrib><title>A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries</title><title>Electrochimica acta</title><description>Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38×10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85kJmol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries.</description><subject>Calcium carbonate</subject><subject>Channels</subject><subject>Electrolytes</subject><subject>Etching</subject><subject>Hard template</subject><subject>Leaves</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Membranes</subject><subject>Polymer electrolyte</subject><subject>Resultants</subject><subject>Three-dimensionally macroporous</subject><subject>Transportation</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUcFqGzEUFKGFumm_oTr2sq7eSivtHk1om0Kgl9yFLL3FMlprI8kF_31f4pJrAwOSHjPD0wxjX0BsQYD-dtxiQt8cYdsLUFsBBHnDNjAa2clxmN6xjaBRp_SoP7CPtR6FEEYbsWHrjh9cCV3DZU2uIV9L9lgrb5muuLqCvB0KYhfigqca88mldOGL8yWvueRz5WtOlwULf9mj0INs5lx4iu0Qz0tHGr53rWGJWD-x97NLFT__O2_Z44_vj3f33cPvn7_udg-dVwO0Tiqlp3EcBuFm6EMPWoGh4Tj1s99LUOBnbfQsJ48qOLGXe2m8V70LIcAgb9nXqy395-mMtdklVo8puRPSzha0MdPY9_0bqIM2IClq8QbqAGICMiaquVIpp1oLznYtcXHlYkHY5-Ls0b4WZ5-LswIIkpS7qxIpnj8Ri60-4sljiIX4NuT4X4-_9XKnJQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Liu, H.Y.</creator><creator>Liu, L.L.</creator><creator>Yang, C.L.</creator><creator>Li, Z.H.</creator><creator>Xiao, Q.Z.</creator><creator>Lei, G.T.</creator><creator>Ding, Y.H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries</title><author>Liu, H.Y. ; Liu, L.L. ; Yang, C.L. ; Li, Z.H. ; Xiao, Q.Z. ; Lei, G.T. ; Ding, Y.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calcium carbonate</topic><topic>Channels</topic><topic>Electrolytes</topic><topic>Etching</topic><topic>Hard template</topic><topic>Leaves</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Membranes</topic><topic>Polymer electrolyte</topic><topic>Resultants</topic><topic>Three-dimensionally macroporous</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, H.Y.</creatorcontrib><creatorcontrib>Liu, L.L.</creatorcontrib><creatorcontrib>Yang, C.L.</creatorcontrib><creatorcontrib>Li, Z.H.</creatorcontrib><creatorcontrib>Xiao, Q.Z.</creatorcontrib><creatorcontrib>Lei, G.T.</creatorcontrib><creatorcontrib>Ding, Y.H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, H.Y.</au><au>Liu, L.L.</au><au>Yang, C.L.</au><au>Li, Z.H.</au><au>Xiao, Q.Z.</au><au>Lei, G.T.</au><au>Ding, Y.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>121</volume><spage>328</spage><epage>336</epage><pages>328-336</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Three-dimensionally macroporous (3DM) polymer membranes based on poly(vinylidene fluoride-co-hexafluropropylene) (P(VdF-HFP)) are simply prepared through etching calcium carbonate (CaCO3) hard template, which was filled in the polymer matrix previously. It is observed, from the SEM images, that some macropores within the obtained 3DM polymer membrane interconnect through many little holes, which would leave the continuous channels for ion transportation in the resultant polymer electrolyte. The 3DM polymer membrane made from the casting solution, in which the mass ratio of CaCO3 to P(VdF-HFP) is 2:1, has a porosity of 73.6%. The resultant 3DM polymer electrolyte (3DMPE) possesses high ionic conductivity of 1.38×10−3 S cm−1 at room temperature and low activation energy for ion transportation of 6.85kJmol−1. The assembled Li/LiMn2O4 cells exhibit good rate and cycling capabilities when using this 3DMPE membrane as a separator. The results suggest the 3DMPE could be promisingly applied in lithium-ion batteries.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2014.01.013</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2014-03, Vol.121, p.328-336
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_1677982225
source ScienceDirect Freedom Collection
subjects Calcium carbonate
Channels
Electrolytes
Etching
Hard template
Leaves
Lithium batteries
Lithium-ion batteries
Membranes
Polymer electrolyte
Resultants
Three-dimensionally macroporous
Transportation
title A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hard-template%20process%20to%20prepare%20three-dimensionally%20macroporous%20polymer%20electrolyte%20for%20lithium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Liu,%20H.Y.&rft.date=2014-03-01&rft.volume=121&rft.spage=328&rft.epage=336&rft.pages=328-336&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2014.01.013&rft_dat=%3Cproquest_cross%3E1551091982%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-3446988550af12d216417344892fcb3141cf676f39ce4da0b3b37cc42addd153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551091982&rft_id=info:pmid/&rfr_iscdi=true