Loading…
A compact curved vibrating wire technique for measurement of hydrogen gas viscosity
► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity....
Saved in:
Published in: | Experimental thermal and fluid science 2013-05, Vol.47, p.1-5 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853 |
---|---|
cites | cdi_FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853 |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | Experimental thermal and fluid science |
container_volume | 47 |
creator | Yusibani, E. Woodfield, P.L. Shinzato, K. Takata, Y. Kohno, M. |
description | ► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity.
Studies with the view to application of a curved vibrating wire method to measure hydrogen gas viscosity have been done. A fine tungsten wire with a nominal diameter of 50μm is bent into a semi-circular shape and arranged symmetrically in a magnetic field. The frequency domain response for forced oscillation of the wire is used for calculating the viscosity. Argon, nitrogen, helium and hydrogen viscosities have been measured at room temperature up to 0.7MPa. The deviations with respect to existing equations suggest that with more refinements it may be possible to take gas viscosity measurements with a precision of less than 1%. |
doi_str_mv | 10.1016/j.expthermflusci.2012.11.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677982526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177712003159</els_id><sourcerecordid>1677982526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhi0EEqXwH3wAiUuCx4k_InFZrVhAWokDcLYcZ9K6SuJiO2X77_GqKyRO9OTLM--M34eQt8BqYCA_HGp8OOY9xnmc1uR8zRnwGqBmTD8jG9CqqzjX8jnZMN21FSilXpJXKR1YITiwDfl-Q12Yj9Zl6tZ4woGefB9t9suO_vYRaUa3X_yvFekYIp3RpjXijEumYaT78xDDDhe6s6kMJheSz-fX5MVop4Rvnt4t-Xn36cftl-r-2-evtzf3lRNC50qCtBJ71oqxQTFwh62TgrUKXddY3YPorbbYgxWDxfJf2TSyUSN2ArHRotmS95fcYwzlwJTNXE7AabILhjUZkEp1mgsur0NbEIL_H23ari20UNehotUdFPTjBXUxpBRxNMfoZxvPBph5lGkO5l-Z5lGmATBFVRl_97TJJmenMdrF-fQ3gyte6in9bMndhcPS-8ljNCUJF4dDcemyGYK_buEfj26-Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349454891</pqid></control><display><type>article</type><title>A compact curved vibrating wire technique for measurement of hydrogen gas viscosity</title><source>ScienceDirect Freedom Collection</source><creator>Yusibani, E. ; Woodfield, P.L. ; Shinzato, K. ; Takata, Y. ; Kohno, M.</creator><creatorcontrib>Yusibani, E. ; Woodfield, P.L. ; Shinzato, K. ; Takata, Y. ; Kohno, M.</creatorcontrib><description>► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity.
Studies with the view to application of a curved vibrating wire method to measure hydrogen gas viscosity have been done. A fine tungsten wire with a nominal diameter of 50μm is bent into a semi-circular shape and arranged symmetrically in a magnetic field. The frequency domain response for forced oscillation of the wire is used for calculating the viscosity. Argon, nitrogen, helium and hydrogen viscosities have been measured at room temperature up to 0.7MPa. The deviations with respect to existing equations suggest that with more refinements it may be possible to take gas viscosity measurements with a precision of less than 1%.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2012.11.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Curve Vibrating wire ; Curved ; Deviation ; Exact sciences and technology ; Gas viscosity ; Helium ; Hydrogen ; Magnetic fields ; Mathematical analysis ; Nitrogen ; Oscillations ; Physics ; Physics of gases ; Physics of gases, plasmas and electric discharges ; Viscosity ; Viscosity, diffusion and thermal conductivity ; Wire</subject><ispartof>Experimental thermal and fluid science, 2013-05, Vol.47, p.1-5</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853</citedby><cites>FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27216663$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yusibani, E.</creatorcontrib><creatorcontrib>Woodfield, P.L.</creatorcontrib><creatorcontrib>Shinzato, K.</creatorcontrib><creatorcontrib>Takata, Y.</creatorcontrib><creatorcontrib>Kohno, M.</creatorcontrib><title>A compact curved vibrating wire technique for measurement of hydrogen gas viscosity</title><title>Experimental thermal and fluid science</title><description>► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity.
Studies with the view to application of a curved vibrating wire method to measure hydrogen gas viscosity have been done. A fine tungsten wire with a nominal diameter of 50μm is bent into a semi-circular shape and arranged symmetrically in a magnetic field. The frequency domain response for forced oscillation of the wire is used for calculating the viscosity. Argon, nitrogen, helium and hydrogen viscosities have been measured at room temperature up to 0.7MPa. The deviations with respect to existing equations suggest that with more refinements it may be possible to take gas viscosity measurements with a precision of less than 1%.</description><subject>Curve Vibrating wire</subject><subject>Curved</subject><subject>Deviation</subject><subject>Exact sciences and technology</subject><subject>Gas viscosity</subject><subject>Helium</subject><subject>Hydrogen</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Nitrogen</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics of gases</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Viscosity</subject><subject>Viscosity, diffusion and thermal conductivity</subject><subject>Wire</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU2P0zAQhi0EEqXwH3wAiUuCx4k_InFZrVhAWokDcLYcZ9K6SuJiO2X77_GqKyRO9OTLM--M34eQt8BqYCA_HGp8OOY9xnmc1uR8zRnwGqBmTD8jG9CqqzjX8jnZMN21FSilXpJXKR1YITiwDfl-Q12Yj9Zl6tZ4woGefB9t9suO_vYRaUa3X_yvFekYIp3RpjXijEumYaT78xDDDhe6s6kMJheSz-fX5MVop4Rvnt4t-Xn36cftl-r-2-evtzf3lRNC50qCtBJ71oqxQTFwh62TgrUKXddY3YPorbbYgxWDxfJf2TSyUSN2ArHRotmS95fcYwzlwJTNXE7AabILhjUZkEp1mgsur0NbEIL_H23ari20UNehotUdFPTjBXUxpBRxNMfoZxvPBph5lGkO5l-Z5lGmATBFVRl_97TJJmenMdrF-fQ3gyte6in9bMndhcPS-8ljNCUJF4dDcemyGYK_buEfj26-Ow</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Yusibani, E.</creator><creator>Woodfield, P.L.</creator><creator>Shinzato, K.</creator><creator>Takata, Y.</creator><creator>Kohno, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>A compact curved vibrating wire technique for measurement of hydrogen gas viscosity</title><author>Yusibani, E. ; Woodfield, P.L. ; Shinzato, K. ; Takata, Y. ; Kohno, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Curve Vibrating wire</topic><topic>Curved</topic><topic>Deviation</topic><topic>Exact sciences and technology</topic><topic>Gas viscosity</topic><topic>Helium</topic><topic>Hydrogen</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Nitrogen</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics of gases</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Viscosity</topic><topic>Viscosity, diffusion and thermal conductivity</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yusibani, E.</creatorcontrib><creatorcontrib>Woodfield, P.L.</creatorcontrib><creatorcontrib>Shinzato, K.</creatorcontrib><creatorcontrib>Takata, Y.</creatorcontrib><creatorcontrib>Kohno, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yusibani, E.</au><au>Woodfield, P.L.</au><au>Shinzato, K.</au><au>Takata, Y.</au><au>Kohno, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A compact curved vibrating wire technique for measurement of hydrogen gas viscosity</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>47</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity.
Studies with the view to application of a curved vibrating wire method to measure hydrogen gas viscosity have been done. A fine tungsten wire with a nominal diameter of 50μm is bent into a semi-circular shape and arranged symmetrically in a magnetic field. The frequency domain response for forced oscillation of the wire is used for calculating the viscosity. Argon, nitrogen, helium and hydrogen viscosities have been measured at room temperature up to 0.7MPa. The deviations with respect to existing equations suggest that with more refinements it may be possible to take gas viscosity measurements with a precision of less than 1%.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2012.11.008</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1777 |
ispartof | Experimental thermal and fluid science, 2013-05, Vol.47, p.1-5 |
issn | 0894-1777 1879-2286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677982526 |
source | ScienceDirect Freedom Collection |
subjects | Curve Vibrating wire Curved Deviation Exact sciences and technology Gas viscosity Helium Hydrogen Magnetic fields Mathematical analysis Nitrogen Oscillations Physics Physics of gases Physics of gases, plasmas and electric discharges Viscosity Viscosity, diffusion and thermal conductivity Wire |
title | A compact curved vibrating wire technique for measurement of hydrogen gas viscosity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20compact%20curved%20vibrating%20wire%20technique%20for%20measurement%20of%20hydrogen%20gas%20viscosity&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Yusibani,%20E.&rft.date=2013-05-01&rft.volume=47&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2012.11.008&rft_dat=%3Cproquest_cross%3E1677982526%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349454891&rft_id=info:pmid/&rfr_iscdi=true |