Loading…

A compact curved vibrating wire technique for measurement of hydrogen gas viscosity

► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity....

Full description

Saved in:
Bibliographic Details
Published in:Experimental thermal and fluid science 2013-05, Vol.47, p.1-5
Main Authors: Yusibani, E., Woodfield, P.L., Shinzato, K., Takata, Y., Kohno, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853
cites cdi_FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853
container_end_page 5
container_issue
container_start_page 1
container_title Experimental thermal and fluid science
container_volume 47
creator Yusibani, E.
Woodfield, P.L.
Shinzato, K.
Takata, Y.
Kohno, M.
description ► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity. Studies with the view to application of a curved vibrating wire method to measure hydrogen gas viscosity have been done. A fine tungsten wire with a nominal diameter of 50μm is bent into a semi-circular shape and arranged symmetrically in a magnetic field. The frequency domain response for forced oscillation of the wire is used for calculating the viscosity. Argon, nitrogen, helium and hydrogen viscosities have been measured at room temperature up to 0.7MPa. The deviations with respect to existing equations suggest that with more refinements it may be possible to take gas viscosity measurements with a precision of less than 1%.
doi_str_mv 10.1016/j.expthermflusci.2012.11.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677982526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177712003159</els_id><sourcerecordid>1677982526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhi0EEqXwH3wAiUuCx4k_InFZrVhAWokDcLYcZ9K6SuJiO2X77_GqKyRO9OTLM--M34eQt8BqYCA_HGp8OOY9xnmc1uR8zRnwGqBmTD8jG9CqqzjX8jnZMN21FSilXpJXKR1YITiwDfl-Q12Yj9Zl6tZ4woGefB9t9suO_vYRaUa3X_yvFekYIp3RpjXijEumYaT78xDDDhe6s6kMJheSz-fX5MVop4Rvnt4t-Xn36cftl-r-2-evtzf3lRNC50qCtBJ71oqxQTFwh62TgrUKXddY3YPorbbYgxWDxfJf2TSyUSN2ArHRotmS95fcYwzlwJTNXE7AabILhjUZkEp1mgsur0NbEIL_H23ari20UNehotUdFPTjBXUxpBRxNMfoZxvPBph5lGkO5l-Z5lGmATBFVRl_97TJJmenMdrF-fQ3gyte6in9bMndhcPS-8ljNCUJF4dDcemyGYK_buEfj26-Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349454891</pqid></control><display><type>article</type><title>A compact curved vibrating wire technique for measurement of hydrogen gas viscosity</title><source>ScienceDirect Freedom Collection</source><creator>Yusibani, E. ; Woodfield, P.L. ; Shinzato, K. ; Takata, Y. ; Kohno, M.</creator><creatorcontrib>Yusibani, E. ; Woodfield, P.L. ; Shinzato, K. ; Takata, Y. ; Kohno, M.</creatorcontrib><description>► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity. Studies with the view to application of a curved vibrating wire method to measure hydrogen gas viscosity have been done. A fine tungsten wire with a nominal diameter of 50μm is bent into a semi-circular shape and arranged symmetrically in a magnetic field. The frequency domain response for forced oscillation of the wire is used for calculating the viscosity. Argon, nitrogen, helium and hydrogen viscosities have been measured at room temperature up to 0.7MPa. The deviations with respect to existing equations suggest that with more refinements it may be possible to take gas viscosity measurements with a precision of less than 1%.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/j.expthermflusci.2012.11.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Curve Vibrating wire ; Curved ; Deviation ; Exact sciences and technology ; Gas viscosity ; Helium ; Hydrogen ; Magnetic fields ; Mathematical analysis ; Nitrogen ; Oscillations ; Physics ; Physics of gases ; Physics of gases, plasmas and electric discharges ; Viscosity ; Viscosity, diffusion and thermal conductivity ; Wire</subject><ispartof>Experimental thermal and fluid science, 2013-05, Vol.47, p.1-5</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853</citedby><cites>FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27216663$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yusibani, E.</creatorcontrib><creatorcontrib>Woodfield, P.L.</creatorcontrib><creatorcontrib>Shinzato, K.</creatorcontrib><creatorcontrib>Takata, Y.</creatorcontrib><creatorcontrib>Kohno, M.</creatorcontrib><title>A compact curved vibrating wire technique for measurement of hydrogen gas viscosity</title><title>Experimental thermal and fluid science</title><description>► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity. Studies with the view to application of a curved vibrating wire method to measure hydrogen gas viscosity have been done. A fine tungsten wire with a nominal diameter of 50μm is bent into a semi-circular shape and arranged symmetrically in a magnetic field. The frequency domain response for forced oscillation of the wire is used for calculating the viscosity. Argon, nitrogen, helium and hydrogen viscosities have been measured at room temperature up to 0.7MPa. The deviations with respect to existing equations suggest that with more refinements it may be possible to take gas viscosity measurements with a precision of less than 1%.</description><subject>Curve Vibrating wire</subject><subject>Curved</subject><subject>Deviation</subject><subject>Exact sciences and technology</subject><subject>Gas viscosity</subject><subject>Helium</subject><subject>Hydrogen</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Nitrogen</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics of gases</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Viscosity</subject><subject>Viscosity, diffusion and thermal conductivity</subject><subject>Wire</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU2P0zAQhi0EEqXwH3wAiUuCx4k_InFZrVhAWokDcLYcZ9K6SuJiO2X77_GqKyRO9OTLM--M34eQt8BqYCA_HGp8OOY9xnmc1uR8zRnwGqBmTD8jG9CqqzjX8jnZMN21FSilXpJXKR1YITiwDfl-Q12Yj9Zl6tZ4woGefB9t9suO_vYRaUa3X_yvFekYIp3RpjXijEumYaT78xDDDhe6s6kMJheSz-fX5MVop4Rvnt4t-Xn36cftl-r-2-evtzf3lRNC50qCtBJ71oqxQTFwh62TgrUKXddY3YPorbbYgxWDxfJf2TSyUSN2ArHRotmS95fcYwzlwJTNXE7AabILhjUZkEp1mgsur0NbEIL_H23ari20UNehotUdFPTjBXUxpBRxNMfoZxvPBph5lGkO5l-Z5lGmATBFVRl_97TJJmenMdrF-fQ3gyte6in9bMndhcPS-8ljNCUJF4dDcemyGYK_buEfj26-Ow</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Yusibani, E.</creator><creator>Woodfield, P.L.</creator><creator>Shinzato, K.</creator><creator>Takata, Y.</creator><creator>Kohno, M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>A compact curved vibrating wire technique for measurement of hydrogen gas viscosity</title><author>Yusibani, E. ; Woodfield, P.L. ; Shinzato, K. ; Takata, Y. ; Kohno, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Curve Vibrating wire</topic><topic>Curved</topic><topic>Deviation</topic><topic>Exact sciences and technology</topic><topic>Gas viscosity</topic><topic>Helium</topic><topic>Hydrogen</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Nitrogen</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics of gases</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Viscosity</topic><topic>Viscosity, diffusion and thermal conductivity</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yusibani, E.</creatorcontrib><creatorcontrib>Woodfield, P.L.</creatorcontrib><creatorcontrib>Shinzato, K.</creatorcontrib><creatorcontrib>Takata, Y.</creatorcontrib><creatorcontrib>Kohno, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yusibani, E.</au><au>Woodfield, P.L.</au><au>Shinzato, K.</au><au>Takata, Y.</au><au>Kohno, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A compact curved vibrating wire technique for measurement of hydrogen gas viscosity</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>47</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>► New hydrogen viscosity data for high-temperature and high-pressure conditions are desirable. ► The high temperatures and high pressures present challenges for experimentation. ► A compact and robust technique. ► Application of the curved wire technique to the measurement of hydrogen gas viscosity. Studies with the view to application of a curved vibrating wire method to measure hydrogen gas viscosity have been done. A fine tungsten wire with a nominal diameter of 50μm is bent into a semi-circular shape and arranged symmetrically in a magnetic field. The frequency domain response for forced oscillation of the wire is used for calculating the viscosity. Argon, nitrogen, helium and hydrogen viscosities have been measured at room temperature up to 0.7MPa. The deviations with respect to existing equations suggest that with more refinements it may be possible to take gas viscosity measurements with a precision of less than 1%.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.expthermflusci.2012.11.008</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2013-05, Vol.47, p.1-5
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_1677982526
source ScienceDirect Freedom Collection
subjects Curve Vibrating wire
Curved
Deviation
Exact sciences and technology
Gas viscosity
Helium
Hydrogen
Magnetic fields
Mathematical analysis
Nitrogen
Oscillations
Physics
Physics of gases
Physics of gases, plasmas and electric discharges
Viscosity
Viscosity, diffusion and thermal conductivity
Wire
title A compact curved vibrating wire technique for measurement of hydrogen gas viscosity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20compact%20curved%20vibrating%20wire%20technique%20for%20measurement%20of%20hydrogen%20gas%20viscosity&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Yusibani,%20E.&rft.date=2013-05-01&rft.volume=47&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/j.expthermflusci.2012.11.008&rft_dat=%3Cproquest_cross%3E1677982526%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-616a6eb045f3e5d2ce4c65047ec93a8b15ba8aeb1a5dae016633637fe95ee3853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349454891&rft_id=info:pmid/&rfr_iscdi=true