Loading…

Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes

The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology and climatology 2014-10, Vol.53 (10), p.2232-2245
Main Authors: Misumi, Ryohei, Motoyoshi, Hiroki, Yamaguchi, Satoru, Nakai, Sento, Ishizaka, Masaaki, Fujiyoshi, Yasushi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863
cites cdi_FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863
container_end_page 2245
container_issue 10
container_start_page 2232
container_title Journal of applied meteorology and climatology
container_volume 53
creator Misumi, Ryohei
Motoyoshi, Hiroki
Yamaguchi, Satoru
Nakai, Sento
Ishizaka, Masaaki
Fujiyoshi, Yasushi
description The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these measurements, which consisted of 6179 particles taken with 44 sheets of filter paper, two empirical relationships are proposed. The first is a relationship between the ratio of liquid water flux to total precipitation intensity (FL ; taking values from 0 to 1) and meteorological surface data. The second is a relationship to estimatefusing the melted diameter of a snowflake, median mass diameter, andFL . It was determined that the root-mean-square errors for estimatingFL andfby using these relationships were 0.160 and 0.144, respectively. It was also found that the ratio of raindrop flux to the total precipitation intensityFR was always below 0.1 whenFL was less than 0.6 but increased rapidly whenFL exceeded 0.8.
doi_str_mv 10.1175/jamc-d-13-0169.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677985467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26176433</jstor_id><sourcerecordid>26176433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863</originalsourceid><addsrcrecordid>eNqN0c1LwzAUAPAgCs7p3YtQ8OKlM2nSfBzH3PxgQ5iKx5Cliba2zZa0iP-9mZMdPHl6j8fvvUfyADhHcIQQy68r1ei0SBFOIaJihA7AAOU5TznB2eE-z8gxOAmhgpAQxvIBWE6bdelLrepkaWrVla4N7-U6JNb5ZBq6som19i2Zl5u-LJJX1RmfzLzSW5k4myxM_QOeWvdpa_Vhwik4sqoO5uw3DsHLbPo8uUvnj7f3k_E81TlCXbqiUGeZpVhTAnmhDYfaEr7iglirWGEgU0xwrRgRSHCbFZhqyzWyhmnKKR6Cq93ctXeb3oRONmXQpq5Va1wfJKIs9ueEsn_QLKOIEpJFevmHVq73bXxIVEgIwUjOo4I7pb0LwRsr1z5-lf-SCMrtPeTDeDGRNxJhub1HjENwsWupQuf83se9jBKM8TeVQIfT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619997458</pqid></control><display><type>article</type><title>Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Misumi, Ryohei ; Motoyoshi, Hiroki ; Yamaguchi, Satoru ; Nakai, Sento ; Ishizaka, Masaaki ; Fujiyoshi, Yasushi</creator><creatorcontrib>Misumi, Ryohei ; Motoyoshi, Hiroki ; Yamaguchi, Satoru ; Nakai, Sento ; Ishizaka, Masaaki ; Fujiyoshi, Yasushi</creatorcontrib><description>The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these measurements, which consisted of 6179 particles taken with 44 sheets of filter paper, two empirical relationships are proposed. The first is a relationship between the ratio of liquid water flux to total precipitation intensity (FL ; taking values from 0 to 1) and meteorological surface data. The second is a relationship to estimatefusing the melted diameter of a snowflake, median mass diameter, andFL . It was determined that the root-mean-square errors for estimatingFL andfby using these relationships were 0.160 and 0.144, respectively. It was also found that the ratio of raindrop flux to the total precipitation intensityFR was always below 0.1 whenFL was less than 0.6 but increased rapidly whenFL exceeded 0.8.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-13-0169.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Calibration ; Clouds ; Empirical analysis ; Error rates ; Estimating ; Filter paper ; Flux ; Ground-based observation ; Ice ; Liquids ; Melting ; Meteorology ; Precipitation ; Radar ; Raindrops ; Rainfall intensity ; Snow ; Snowflakes ; Studies ; Water ; Water filtration</subject><ispartof>Journal of applied meteorology and climatology, 2014-10, Vol.53 (10), p.2232-2245</ispartof><rights>2014 American Meteorological Society</rights><rights>Copyright American Meteorological Society Oct 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863</citedby><cites>FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26176433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26176433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Misumi, Ryohei</creatorcontrib><creatorcontrib>Motoyoshi, Hiroki</creatorcontrib><creatorcontrib>Yamaguchi, Satoru</creatorcontrib><creatorcontrib>Nakai, Sento</creatorcontrib><creatorcontrib>Ishizaka, Masaaki</creatorcontrib><creatorcontrib>Fujiyoshi, Yasushi</creatorcontrib><title>Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes</title><title>Journal of applied meteorology and climatology</title><description>The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these measurements, which consisted of 6179 particles taken with 44 sheets of filter paper, two empirical relationships are proposed. The first is a relationship between the ratio of liquid water flux to total precipitation intensity (FL ; taking values from 0 to 1) and meteorological surface data. The second is a relationship to estimatefusing the melted diameter of a snowflake, median mass diameter, andFL . It was determined that the root-mean-square errors for estimatingFL andfby using these relationships were 0.160 and 0.144, respectively. It was also found that the ratio of raindrop flux to the total precipitation intensityFR was always below 0.1 whenFL was less than 0.6 but increased rapidly whenFL exceeded 0.8.</description><subject>Calibration</subject><subject>Clouds</subject><subject>Empirical analysis</subject><subject>Error rates</subject><subject>Estimating</subject><subject>Filter paper</subject><subject>Flux</subject><subject>Ground-based observation</subject><subject>Ice</subject><subject>Liquids</subject><subject>Melting</subject><subject>Meteorology</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Raindrops</subject><subject>Rainfall intensity</subject><subject>Snow</subject><subject>Snowflakes</subject><subject>Studies</subject><subject>Water</subject><subject>Water filtration</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0c1LwzAUAPAgCs7p3YtQ8OKlM2nSfBzH3PxgQ5iKx5Cliba2zZa0iP-9mZMdPHl6j8fvvUfyADhHcIQQy68r1ei0SBFOIaJihA7AAOU5TznB2eE-z8gxOAmhgpAQxvIBWE6bdelLrepkaWrVla4N7-U6JNb5ZBq6som19i2Zl5u-LJJX1RmfzLzSW5k4myxM_QOeWvdpa_Vhwik4sqoO5uw3DsHLbPo8uUvnj7f3k_E81TlCXbqiUGeZpVhTAnmhDYfaEr7iglirWGEgU0xwrRgRSHCbFZhqyzWyhmnKKR6Cq93ctXeb3oRONmXQpq5Va1wfJKIs9ueEsn_QLKOIEpJFevmHVq73bXxIVEgIwUjOo4I7pb0LwRsr1z5-lf-SCMrtPeTDeDGRNxJhub1HjENwsWupQuf83se9jBKM8TeVQIfT</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Misumi, Ryohei</creator><creator>Motoyoshi, Hiroki</creator><creator>Yamaguchi, Satoru</creator><creator>Nakai, Sento</creator><creator>Ishizaka, Masaaki</creator><creator>Fujiyoshi, Yasushi</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7QH</scope></search><sort><creationdate>20141001</creationdate><title>Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes</title><author>Misumi, Ryohei ; Motoyoshi, Hiroki ; Yamaguchi, Satoru ; Nakai, Sento ; Ishizaka, Masaaki ; Fujiyoshi, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>Clouds</topic><topic>Empirical analysis</topic><topic>Error rates</topic><topic>Estimating</topic><topic>Filter paper</topic><topic>Flux</topic><topic>Ground-based observation</topic><topic>Ice</topic><topic>Liquids</topic><topic>Melting</topic><topic>Meteorology</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Raindrops</topic><topic>Rainfall intensity</topic><topic>Snow</topic><topic>Snowflakes</topic><topic>Studies</topic><topic>Water</topic><topic>Water filtration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misumi, Ryohei</creatorcontrib><creatorcontrib>Motoyoshi, Hiroki</creatorcontrib><creatorcontrib>Yamaguchi, Satoru</creatorcontrib><creatorcontrib>Nakai, Sento</creatorcontrib><creatorcontrib>Ishizaka, Masaaki</creatorcontrib><creatorcontrib>Fujiyoshi, Yasushi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Aqualine</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misumi, Ryohei</au><au>Motoyoshi, Hiroki</au><au>Yamaguchi, Satoru</au><au>Nakai, Sento</au><au>Ishizaka, Masaaki</au><au>Fujiyoshi, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>53</volume><issue>10</issue><spage>2232</spage><epage>2245</epage><pages>2232-2245</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these measurements, which consisted of 6179 particles taken with 44 sheets of filter paper, two empirical relationships are proposed. The first is a relationship between the ratio of liquid water flux to total precipitation intensity (FL ; taking values from 0 to 1) and meteorological surface data. The second is a relationship to estimatefusing the melted diameter of a snowflake, median mass diameter, andFL . It was determined that the root-mean-square errors for estimatingFL andfby using these relationships were 0.160 and 0.144, respectively. It was also found that the ratio of raindrop flux to the total precipitation intensityFR was always below 0.1 whenFL was less than 0.6 but increased rapidly whenFL exceeded 0.8.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-13-0169.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2014-10, Vol.53 (10), p.2232-2245
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_miscellaneous_1677985467
source JSTOR Archival Journals and Primary Sources Collection
subjects Calibration
Clouds
Empirical analysis
Error rates
Estimating
Filter paper
Flux
Ground-based observation
Ice
Liquids
Melting
Meteorology
Precipitation
Radar
Raindrops
Rainfall intensity
Snow
Snowflakes
Studies
Water
Water filtration
title Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Relationships%20for%20Estimating%20Liquid%20Water%20Fraction%20of%20Melting%20Snowflakes&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Misumi,%20Ryohei&rft.date=2014-10-01&rft.volume=53&rft.issue=10&rft.spage=2232&rft.epage=2245&rft.pages=2232-2245&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/jamc-d-13-0169.1&rft_dat=%3Cjstor_proqu%3E26176433%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1619997458&rft_id=info:pmid/&rft_jstor_id=26176433&rfr_iscdi=true