Loading…
Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes
The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these...
Saved in:
Published in: | Journal of applied meteorology and climatology 2014-10, Vol.53 (10), p.2232-2245 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863 |
container_end_page | 2245 |
container_issue | 10 |
container_start_page | 2232 |
container_title | Journal of applied meteorology and climatology |
container_volume | 53 |
creator | Misumi, Ryohei Motoyoshi, Hiroki Yamaguchi, Satoru Nakai, Sento Ishizaka, Masaaki Fujiyoshi, Yasushi |
description | The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these measurements, which consisted of 6179 particles taken with 44 sheets of filter paper, two empirical relationships are proposed. The first is a relationship between the ratio of liquid water flux to total precipitation intensity (FL
; taking values from 0 to 1) and meteorological surface data. The second is a relationship to estimatefusing the melted diameter of a snowflake, median mass diameter, andFL
. It was determined that the root-mean-square errors for estimatingFL
andfby using these relationships were 0.160 and 0.144, respectively. It was also found that the ratio of raindrop flux to the total precipitation intensityFR
was always below 0.1 whenFL
was less than 0.6 but increased rapidly whenFL
exceeded 0.8. |
doi_str_mv | 10.1175/jamc-d-13-0169.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1677985467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26176433</jstor_id><sourcerecordid>26176433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863</originalsourceid><addsrcrecordid>eNqN0c1LwzAUAPAgCs7p3YtQ8OKlM2nSfBzH3PxgQ5iKx5Cliba2zZa0iP-9mZMdPHl6j8fvvUfyADhHcIQQy68r1ei0SBFOIaJihA7AAOU5TznB2eE-z8gxOAmhgpAQxvIBWE6bdelLrepkaWrVla4N7-U6JNb5ZBq6som19i2Zl5u-LJJX1RmfzLzSW5k4myxM_QOeWvdpa_Vhwik4sqoO5uw3DsHLbPo8uUvnj7f3k_E81TlCXbqiUGeZpVhTAnmhDYfaEr7iglirWGEgU0xwrRgRSHCbFZhqyzWyhmnKKR6Cq93ctXeb3oRONmXQpq5Va1wfJKIs9ueEsn_QLKOIEpJFevmHVq73bXxIVEgIwUjOo4I7pb0LwRsr1z5-lf-SCMrtPeTDeDGRNxJhub1HjENwsWupQuf83se9jBKM8TeVQIfT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619997458</pqid></control><display><type>article</type><title>Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Misumi, Ryohei ; Motoyoshi, Hiroki ; Yamaguchi, Satoru ; Nakai, Sento ; Ishizaka, Masaaki ; Fujiyoshi, Yasushi</creator><creatorcontrib>Misumi, Ryohei ; Motoyoshi, Hiroki ; Yamaguchi, Satoru ; Nakai, Sento ; Ishizaka, Masaaki ; Fujiyoshi, Yasushi</creatorcontrib><description>The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these measurements, which consisted of 6179 particles taken with 44 sheets of filter paper, two empirical relationships are proposed. The first is a relationship between the ratio of liquid water flux to total precipitation intensity (FL
; taking values from 0 to 1) and meteorological surface data. The second is a relationship to estimatefusing the melted diameter of a snowflake, median mass diameter, andFL
. It was determined that the root-mean-square errors for estimatingFL
andfby using these relationships were 0.160 and 0.144, respectively. It was also found that the ratio of raindrop flux to the total precipitation intensityFR
was always below 0.1 whenFL
was less than 0.6 but increased rapidly whenFL
exceeded 0.8.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-13-0169.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Calibration ; Clouds ; Empirical analysis ; Error rates ; Estimating ; Filter paper ; Flux ; Ground-based observation ; Ice ; Liquids ; Melting ; Meteorology ; Precipitation ; Radar ; Raindrops ; Rainfall intensity ; Snow ; Snowflakes ; Studies ; Water ; Water filtration</subject><ispartof>Journal of applied meteorology and climatology, 2014-10, Vol.53 (10), p.2232-2245</ispartof><rights>2014 American Meteorological Society</rights><rights>Copyright American Meteorological Society Oct 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863</citedby><cites>FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26176433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26176433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Misumi, Ryohei</creatorcontrib><creatorcontrib>Motoyoshi, Hiroki</creatorcontrib><creatorcontrib>Yamaguchi, Satoru</creatorcontrib><creatorcontrib>Nakai, Sento</creatorcontrib><creatorcontrib>Ishizaka, Masaaki</creatorcontrib><creatorcontrib>Fujiyoshi, Yasushi</creatorcontrib><title>Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes</title><title>Journal of applied meteorology and climatology</title><description>The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these measurements, which consisted of 6179 particles taken with 44 sheets of filter paper, two empirical relationships are proposed. The first is a relationship between the ratio of liquid water flux to total precipitation intensity (FL
; taking values from 0 to 1) and meteorological surface data. The second is a relationship to estimatefusing the melted diameter of a snowflake, median mass diameter, andFL
. It was determined that the root-mean-square errors for estimatingFL
andfby using these relationships were 0.160 and 0.144, respectively. It was also found that the ratio of raindrop flux to the total precipitation intensityFR
was always below 0.1 whenFL
was less than 0.6 but increased rapidly whenFL
exceeded 0.8.</description><subject>Calibration</subject><subject>Clouds</subject><subject>Empirical analysis</subject><subject>Error rates</subject><subject>Estimating</subject><subject>Filter paper</subject><subject>Flux</subject><subject>Ground-based observation</subject><subject>Ice</subject><subject>Liquids</subject><subject>Melting</subject><subject>Meteorology</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Raindrops</subject><subject>Rainfall intensity</subject><subject>Snow</subject><subject>Snowflakes</subject><subject>Studies</subject><subject>Water</subject><subject>Water filtration</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0c1LwzAUAPAgCs7p3YtQ8OKlM2nSfBzH3PxgQ5iKx5Cliba2zZa0iP-9mZMdPHl6j8fvvUfyADhHcIQQy68r1ei0SBFOIaJihA7AAOU5TznB2eE-z8gxOAmhgpAQxvIBWE6bdelLrepkaWrVla4N7-U6JNb5ZBq6som19i2Zl5u-LJJX1RmfzLzSW5k4myxM_QOeWvdpa_Vhwik4sqoO5uw3DsHLbPo8uUvnj7f3k_E81TlCXbqiUGeZpVhTAnmhDYfaEr7iglirWGEgU0xwrRgRSHCbFZhqyzWyhmnKKR6Cq93ctXeb3oRONmXQpq5Va1wfJKIs9ueEsn_QLKOIEpJFevmHVq73bXxIVEgIwUjOo4I7pb0LwRsr1z5-lf-SCMrtPeTDeDGRNxJhub1HjENwsWupQuf83se9jBKM8TeVQIfT</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Misumi, Ryohei</creator><creator>Motoyoshi, Hiroki</creator><creator>Yamaguchi, Satoru</creator><creator>Nakai, Sento</creator><creator>Ishizaka, Masaaki</creator><creator>Fujiyoshi, Yasushi</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7QH</scope></search><sort><creationdate>20141001</creationdate><title>Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes</title><author>Misumi, Ryohei ; Motoyoshi, Hiroki ; Yamaguchi, Satoru ; Nakai, Sento ; Ishizaka, Masaaki ; Fujiyoshi, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>Clouds</topic><topic>Empirical analysis</topic><topic>Error rates</topic><topic>Estimating</topic><topic>Filter paper</topic><topic>Flux</topic><topic>Ground-based observation</topic><topic>Ice</topic><topic>Liquids</topic><topic>Melting</topic><topic>Meteorology</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Raindrops</topic><topic>Rainfall intensity</topic><topic>Snow</topic><topic>Snowflakes</topic><topic>Studies</topic><topic>Water</topic><topic>Water filtration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misumi, Ryohei</creatorcontrib><creatorcontrib>Motoyoshi, Hiroki</creatorcontrib><creatorcontrib>Yamaguchi, Satoru</creatorcontrib><creatorcontrib>Nakai, Sento</creatorcontrib><creatorcontrib>Ishizaka, Masaaki</creatorcontrib><creatorcontrib>Fujiyoshi, Yasushi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Aqualine</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misumi, Ryohei</au><au>Motoyoshi, Hiroki</au><au>Yamaguchi, Satoru</au><au>Nakai, Sento</au><au>Ishizaka, Masaaki</au><au>Fujiyoshi, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>53</volume><issue>10</issue><spage>2232</spage><epage>2245</epage><pages>2232-2245</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>The liquid water fraction of individual snowflakesfis an important parameter when calculating the radar reflectivity of a melting layer. A ground-based observation offat Nagaoka, Japan, was conducted by using dye-treated filter papers that were kept at a temperature of 0°C. From the results of these measurements, which consisted of 6179 particles taken with 44 sheets of filter paper, two empirical relationships are proposed. The first is a relationship between the ratio of liquid water flux to total precipitation intensity (FL
; taking values from 0 to 1) and meteorological surface data. The second is a relationship to estimatefusing the melted diameter of a snowflake, median mass diameter, andFL
. It was determined that the root-mean-square errors for estimatingFL
andfby using these relationships were 0.160 and 0.144, respectively. It was also found that the ratio of raindrop flux to the total precipitation intensityFR
was always below 0.1 whenFL
was less than 0.6 but increased rapidly whenFL
exceeded 0.8.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-13-0169.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2014-10, Vol.53 (10), p.2232-2245 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_miscellaneous_1677985467 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Calibration Clouds Empirical analysis Error rates Estimating Filter paper Flux Ground-based observation Ice Liquids Melting Meteorology Precipitation Radar Raindrops Rainfall intensity Snow Snowflakes Studies Water Water filtration |
title | Empirical Relationships for Estimating Liquid Water Fraction of Melting Snowflakes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Relationships%20for%20Estimating%20Liquid%20Water%20Fraction%20of%20Melting%20Snowflakes&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Misumi,%20Ryohei&rft.date=2014-10-01&rft.volume=53&rft.issue=10&rft.spage=2232&rft.epage=2245&rft.pages=2232-2245&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/jamc-d-13-0169.1&rft_dat=%3Cjstor_proqu%3E26176433%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-b60c22f63c6408dce80cf48b894ffa7de07a798ca749198f2d36cf8c1fe7c6863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1619997458&rft_id=info:pmid/&rft_jstor_id=26176433&rfr_iscdi=true |