Loading…
Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers
In this study, microfluidic platforms were used to visualize air bubble transport in two-dimensional (2D) representations of gas diffusion layers (GDLs) to gain insight into how the geometric features of the GDL impact multiphase flow in polymer electrolyte membrane (PEM) electrolyzers. Two-dimensio...
Saved in:
Published in: | Journal of power sources 2014-07, Vol.258, p.142-149 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, microfluidic platforms were used to visualize air bubble transport in two-dimensional (2D) representations of gas diffusion layers (GDLs) to gain insight into how the geometric features of the GDL impact multiphase flow in polymer electrolyte membrane (PEM) electrolyzers. Two-dimensional porous networks were designed using volumetric pore space information, including average porosity and average throat size obtained from micro-computed tomography (micro CT) visualizations. Microfluidic chips were fabricated to represent felt, sintered powder, and foam GDLs and used to simulate the transfer of oxygen bubbles generated at the catalyst layer, through the GDL towards the flow channels of a PEM electrolyzer. The results of this work indicate that the use of microfluidic platforms for evaluating PEM electrolyzer GDLs is highly promising. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2014.02.042 |