Loading…
The role of low-mass star clusters in massive star formation. The Orion case
Context. Different theories have been proposed to explain the formation of massive stars: two are based on accretion processes (monolithic core accretion and competitive accretion), and another on coalescence of low- and intermediate-mass stars. To distinguish between these theories, it is crucial t...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2013-06, Vol.554, p.np-np |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Context. Different theories have been proposed to explain the formation of massive stars: two are based on accretion processes (monolithic core accretion and competitive accretion), and another on coalescence of low- and intermediate-mass stars. To distinguish between these theories, it is crucial to establish the distribution, the extinction, and the density of young low-mass stars in massive star-forming regions. X-ray observations can penetrate the very obscured cradles of massive stars, directly sampling the distribution of the population of pre-main sequence (PMS) low-mass stars in these regions. Aims. Our aim is to analyze deep X-ray observations of the Orion massive star-forming region using the Chandra Orion Ultradeep Project (COUP) catalog, to reveal the distribution of the population and clustering of PMS low-mass stars, and to study their possible role in massive star formation. Methods. We studied the distribution of PMS low-mass stars with X-ray emission in Orion as a function of extinction with two different methods: a spatial gridding and a close-neigbors method with cells of ~0.03 × 0.03 pc2, the typical size of protostellar cores. We derived density maps of the stellar population and calculated cluster stellar densities. Results. Consistent with previous studies, we found that PMS low-mass stars cluster toward the three massive star-forming regions: the Trapezium cluster (TC), the Orion hot core (OHC), and the OMC1-S region. We derived PMS low-mass stellar densities of 105 stars pc-3 in the TC and OMC1-S, and of 106 stars pc-3 in the OHC. The close association between the low-mass star clusters with massive star cradles supports the role of these clusters in the formation of massive stars. The X-ray observations show for the first time in the TC that low-mass stars with intermediate extinction are clustered toward the position of the most massive star θ1 Ori C, which is surrounded by a ring of non-extincted PMS low-mass stars. This “envelope-core” structure is also supported by infrared and optical observations. Our analysis suggests that at least two basic ingredients are needed in massive star formation: the presence of dense gas and a cluster of low-mass stars. The scenario that better explains our findings assumes high fragmentation in the parental core, accretion at subcore scales that forms a low-mass stellar cluster, and subsequent competitive accretion. Finally, although coalescence does not seem a common mechanism for building up |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/201117487 |