Loading…
Dynamic Mechanical Behavior of Two Fiber-Reinforced Composites
The mechanical behavior of two composites, i.e., CF3031/QY8911 (CQ, hereafter in this paper) and EW100A/BA9916 (EB, hereafter in this paper), under dynamic loadings were carefully studied by using split Hopkinson pressure bar (SHPB) system. The results show that compressive strength of CQ increases...
Saved in:
Published in: | Key engineering materials 2012-11, Vol.525-526, p.261-264 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanical behavior of two composites, i.e., CF3031/QY8911 (CQ, hereafter in this paper) and EW100A/BA9916 (EB, hereafter in this paper), under dynamic loadings were carefully studied by using split Hopkinson pressure bar (SHPB) system. The results show that compressive strength of CQ increases with increasing strain-rates, while for EB the compressive strength at strain-rate 1500/s is lower then that at 800/s or 400/s. More interestingly, most of the stress strain curves of both of the two composites are not monotonous but exhibit double-peak shape. To identify this unusual phenominon, a high speed photographic system is introduced. The deformation as well as fracture characteristics of the composites under dynamic loadings were captured. The photoes indicate that two different failure mechanisms work during dynamic fracture process. The first one is axial splitting between the fiber and the matrix and the second one is overall shear. The interficial strength between the fiber and matrix, which is also strain rate dependent, determines the fracture modes and the shape of the stress/strain curves. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.525-526.261 |