Loading…

ANN-Based Wheat Chlorophyll Density Estimation Using Canopy Hyperspectral Vegetation Indices

Canopy leaf Chlorophyll Density is a key index for evaluating crop potential photosynthetic efficiency and nutritional stress. Leaf Chlorophyll Density estimate using canopy hyperspectral vegetation indices provides a rapid and non-destructive method to evaluate yield predictions. A systematic compa...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2012-01, Vol.500, p.243-249
Main Authors: Wang, Da Cheng, Wang, Ji Hua, Li, Cun Jun, Sen, Luo Rui, Zhang, Dong Yan, Li, Yu Fei, Zhang, Yao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Canopy leaf Chlorophyll Density is a key index for evaluating crop potential photosynthetic efficiency and nutritional stress. Leaf Chlorophyll Density estimate using canopy hyperspectral vegetation indices provides a rapid and non-destructive method to evaluate yield predictions. A systematic comparison of two approaches to estimate Chlorophyll Density using 6 spectral vegetation indices (VIs) was presented in this study. In this study, the traditional statistical method based on power regression analyses was compared to the emerging computationally powerful techniques based on artificial neural network (ANN). The regression models of TCARI 、SAVI 、MSAVI and RDVIgreen were found to be more suitable for predicting Chlorophyll Density when only traditional statistical method was used especially TCARI and RDVI. ANN method was more appropriate to develop prediction models. The comparisons between these two methods were based on analysis of the statistic parameters. Results obtained using Root Mean Square Error (RMSE) for ANNs were significantly lower than the traditional method. From this analysis it is concluded that the neural network is more robust to train and estimate crop Chlorophyll Density from remote sensing data.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.500.243