Loading…

Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks

Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc. The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2014-12, Vol.267, p.576-583
Main Authors: He, Zhiwei, Gao, Mingyu, Ma, Guojin, Liu, Yuanyuan, Chen, Sanxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-1530a731527fdf0200e671fbcfe3e2d5cef057906c1497d8326c64a025bee46c3
cites cdi_FETCH-LOGICAL-c449t-1530a731527fdf0200e671fbcfe3e2d5cef057906c1497d8326c64a025bee46c3
container_end_page 583
container_issue
container_start_page 576
container_title Journal of power sources
container_volume 267
creator He, Zhiwei
Gao, Mingyu
Ma, Guojin
Liu, Yuanyuan
Chen, Sanxin
description Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc. The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteries based on Dynamic Bayesian Networks (DBNs). The structure of the DBN model is built according to the experience of experts, with the state of charges used as hidden states and the terminal voltages used as observations in the DBN. Parameters of the DBN model are learned based on training data collected through Li-ion battery aging experiments. A forward algorithm is applied for the inference of the DBN model in order to estimate the SOH in real-time. Experimental results show that the proposed method is effective and efficient in estimating the SOH of Li-ion batteries. •A novel SOH estimation method based on Dynamic Bayesian Networks is proposed.•The SOH can be estimated in an online manner.•Only terminal voltages during the constant charge process should be measured.•The estimated SOH can be provided inherently as either a fuzzy or an exact value.
doi_str_mv 10.1016/j.jpowsour.2014.05.100
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678005021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314007939</els_id><sourcerecordid>1567082529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-1530a731527fdf0200e671fbcfe3e2d5cef057906c1497d8326c64a025bee46c3</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhq0KJJbSV0C5IHHJduzEdnJraQtFqugFLlwsrzPuesnai8dptW_frLZw7Wk0o--fGX2MfeSw5MDV-Wa52aUnSlNeCuDtEuQ8hxO24J1uaqGlfMMW0Oiu1lo279h7og0AcK5hwX7fxzFErKjYgnXy9RrtWNYVUglbW0KKVfLVGMo6TNv60K5sKZgDUjVRiA_V9T7abXDVF7tHCjZWP7A8pfyHPrC33o6EZy_1lP36evPz6ra-u__2_eryrnZt25eaywasbrgU2g8eBAAqzf3KeWxQDNKhB6l7UI63vR66RiinWgtCrhBb5ZpT9vm4d5fT32l-3GwDORxHGzFNZLjSHYAEwV9HpdLQCSn6GVVH1OVElNGbXZ6N5L3hYA7ezcb8824O3g3IeQ5z8NPLDUvOjj7b6AL9T4tO9lq1auYujhzObh4DZkMuYHQ4hIyumCGF1049A-jgnRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567082529</pqid></control><display><type>article</type><title>Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks</title><source>Elsevier</source><creator>He, Zhiwei ; Gao, Mingyu ; Ma, Guojin ; Liu, Yuanyuan ; Chen, Sanxin</creator><creatorcontrib>He, Zhiwei ; Gao, Mingyu ; Ma, Guojin ; Liu, Yuanyuan ; Chen, Sanxin</creatorcontrib><description>Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc. The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteries based on Dynamic Bayesian Networks (DBNs). The structure of the DBN model is built according to the experience of experts, with the state of charges used as hidden states and the terminal voltages used as observations in the DBN. Parameters of the DBN model are learned based on training data collected through Li-ion battery aging experiments. A forward algorithm is applied for the inference of the DBN model in order to estimate the SOH in real-time. Experimental results show that the proposed method is effective and efficient in estimating the SOH of Li-ion batteries. •A novel SOH estimation method based on Dynamic Bayesian Networks is proposed.•The SOH can be estimated in an online manner.•Only terminal voltages during the constant charge process should be measured.•The estimated SOH can be provided inherently as either a fuzzy or an exact value.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.05.100</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Battery management system ; Bayesian analysis ; Direct energy conversion and energy accumulation ; Dynamic Bayesian Network ; Dynamical systems ; Dynamics ; Electric batteries ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Lithium batteries ; Lithium-ion batteries ; Lithium-ion battery ; Networks ; Online ; State of health ; Storage batteries</subject><ispartof>Journal of power sources, 2014-12, Vol.267, p.576-583</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-1530a731527fdf0200e671fbcfe3e2d5cef057906c1497d8326c64a025bee46c3</citedby><cites>FETCH-LOGICAL-c449t-1530a731527fdf0200e671fbcfe3e2d5cef057906c1497d8326c64a025bee46c3</cites><orcidid>0000-0001-7264-2019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28597646$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Zhiwei</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Ma, Guojin</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Sanxin</creatorcontrib><title>Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks</title><title>Journal of power sources</title><description>Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc. The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteries based on Dynamic Bayesian Networks (DBNs). The structure of the DBN model is built according to the experience of experts, with the state of charges used as hidden states and the terminal voltages used as observations in the DBN. Parameters of the DBN model are learned based on training data collected through Li-ion battery aging experiments. A forward algorithm is applied for the inference of the DBN model in order to estimate the SOH in real-time. Experimental results show that the proposed method is effective and efficient in estimating the SOH of Li-ion batteries. •A novel SOH estimation method based on Dynamic Bayesian Networks is proposed.•The SOH can be estimated in an online manner.•Only terminal voltages during the constant charge process should be measured.•The estimated SOH can be provided inherently as either a fuzzy or an exact value.</description><subject>Applied sciences</subject><subject>Battery management system</subject><subject>Bayesian analysis</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Dynamic Bayesian Network</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric batteries</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Networks</subject><subject>Online</subject><subject>State of health</subject><subject>Storage batteries</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhq0KJJbSV0C5IHHJduzEdnJraQtFqugFLlwsrzPuesnai8dptW_frLZw7Wk0o--fGX2MfeSw5MDV-Wa52aUnSlNeCuDtEuQ8hxO24J1uaqGlfMMW0Oiu1lo279h7og0AcK5hwX7fxzFErKjYgnXy9RrtWNYVUglbW0KKVfLVGMo6TNv60K5sKZgDUjVRiA_V9T7abXDVF7tHCjZWP7A8pfyHPrC33o6EZy_1lP36evPz6ra-u__2_eryrnZt25eaywasbrgU2g8eBAAqzf3KeWxQDNKhB6l7UI63vR66RiinWgtCrhBb5ZpT9vm4d5fT32l-3GwDORxHGzFNZLjSHYAEwV9HpdLQCSn6GVVH1OVElNGbXZ6N5L3hYA7ezcb8824O3g3IeQ5z8NPLDUvOjj7b6AL9T4tO9lq1auYujhzObh4DZkMuYHQ4hIyumCGF1049A-jgnRU</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>He, Zhiwei</creator><creator>Gao, Mingyu</creator><creator>Ma, Guojin</creator><creator>Liu, Yuanyuan</creator><creator>Chen, Sanxin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7264-2019</orcidid></search><sort><creationdate>20141201</creationdate><title>Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks</title><author>He, Zhiwei ; Gao, Mingyu ; Ma, Guojin ; Liu, Yuanyuan ; Chen, Sanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-1530a731527fdf0200e671fbcfe3e2d5cef057906c1497d8326c64a025bee46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Battery management system</topic><topic>Bayesian analysis</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Dynamic Bayesian Network</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric batteries</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Networks</topic><topic>Online</topic><topic>State of health</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhiwei</creatorcontrib><creatorcontrib>Gao, Mingyu</creatorcontrib><creatorcontrib>Ma, Guojin</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Sanxin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhiwei</au><au>Gao, Mingyu</au><au>Ma, Guojin</au><au>Liu, Yuanyuan</au><au>Chen, Sanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks</atitle><jtitle>Journal of power sources</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>267</volume><spage>576</spage><epage>583</epage><pages>576-583</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc. The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteries based on Dynamic Bayesian Networks (DBNs). The structure of the DBN model is built according to the experience of experts, with the state of charges used as hidden states and the terminal voltages used as observations in the DBN. Parameters of the DBN model are learned based on training data collected through Li-ion battery aging experiments. A forward algorithm is applied for the inference of the DBN model in order to estimate the SOH in real-time. Experimental results show that the proposed method is effective and efficient in estimating the SOH of Li-ion batteries. •A novel SOH estimation method based on Dynamic Bayesian Networks is proposed.•The SOH can be estimated in an online manner.•Only terminal voltages during the constant charge process should be measured.•The estimated SOH can be provided inherently as either a fuzzy or an exact value.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.05.100</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7264-2019</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-12, Vol.267, p.576-583
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1678005021
source Elsevier
subjects Applied sciences
Battery management system
Bayesian analysis
Direct energy conversion and energy accumulation
Dynamic Bayesian Network
Dynamical systems
Dynamics
Electric batteries
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Lithium batteries
Lithium-ion batteries
Lithium-ion battery
Networks
Online
State of health
Storage batteries
title Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20state-of-health%20estimation%20of%20lithium-ion%20batteries%20using%20Dynamic%20Bayesian%20Networks&rft.jtitle=Journal%20of%20power%20sources&rft.au=He,%20Zhiwei&rft.date=2014-12-01&rft.volume=267&rft.spage=576&rft.epage=583&rft.pages=576-583&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.05.100&rft_dat=%3Cproquest_cross%3E1567082529%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-1530a731527fdf0200e671fbcfe3e2d5cef057906c1497d8326c64a025bee46c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567082529&rft_id=info:pmid/&rfr_iscdi=true