Loading…

Component GARCH Models to Account for Seasonal Patterns and Uncertainties in Travel-Time Prediction

Uncertainty is often associated with travel-time prediction. Traditional point prediction methods only provide point values that are unable to offer enough information on the reliability of prediction results. The recent development of statistical volatility models has given us an effective way to c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2015-04, Vol.16 (2), p.719-729
Main Authors: Yanru Zhang, Haghani, Ali, Xiaosi Zeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Uncertainty is often associated with travel-time prediction. Traditional point prediction methods only provide point values that are unable to offer enough information on the reliability of prediction results. The recent development of statistical volatility models has given us an effective way to capture uncertainties in data. Generalized autoregressive conditional heteroskedasticity (GARCH) models have been widely used in transportation systems as a way to account for this uncertainty by providing more accurate prediction intervals. However, a GARCH model arguably does not consider the trend and seasonality in data. If there is a trend or seasonality, the performance of the GARCH model may be affected. In the context of travel-time prediction, this paper proposes two component GARCH models that are able to model trend and seasonal components through decomposition. The travel-time data obtained along a freeway corridor in Houston, TX, USA, were used to empirically test the performance of the proposed models. The study results indicate that the proposed models perform well when capturing uncertainties associated with travel-time prediction.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2014.2339097