Loading…

Location Estimation via Sparse Signal Reconstruction in Subsampled Overcomplete Dictionaries for Wireless 4G Networks

We present a simple and effective means for position estimation designed to be deployed in urban and dense multipath environments characteristic of 4G wireless networks. To address the multipath channel of such environments a fingerprinting scheme is proposed. One of the drawbacks to this class of m...

Full description

Saved in:
Bibliographic Details
Main Authors: Roth, John, Tummala, Murali, McEachen, John, Scrofani, James, Hunt, Allison
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5438
container_issue
container_start_page 5432
container_title
container_volume
creator Roth, John
Tummala, Murali
McEachen, John
Scrofani, James
Hunt, Allison
description We present a simple and effective means for position estimation designed to be deployed in urban and dense multipath environments characteristic of 4G wireless networks. To address the multipath channel of such environments a fingerprinting scheme is proposed. One of the drawbacks to this class of methods is the large initial cost associated with establishing a database matrix. This issue is addressed by using a multi-channel filtering method adapted from the H.264 video standard to recover the incomplete data. Position estimation is accomplished via a modified k-nearest neighbor approach to pattern matching. We show through simulation that not only are we able to achieve compelling fidelity in the reconstructed databases from highly incomplete data, but that we are able to do so at a relatively low computational cost. Finally, our results demonstrate that we are able to achieve accurate position estimates vis-à-vis severe under sampling and noisy channel conditions.
doi_str_mv 10.1109/HICSS.2015.639
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1678015964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7070468</ieee_id><sourcerecordid>1678015964</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-d92f25f5a3fa47fbc80bc70b46ba106b298cd598e51561cc79ea25d9c00e7ace3</originalsourceid><addsrcrecordid>eNotkDtPwzAYRQ0CiVK6srB4ZEmxnfg1olLaShWVCIgxcpwvyJDGwU6K-PeUlume4egOB6FrSqaUEn23XM3yfMoI5VOR6hM00VLRTGotUyH5KRoxLlkilGBnaER5ShIqCL9AlzF-EMJIRsUIDWtvTe98i-exd9sj7pzBeWdCBJy799Y0-Bmsb2MfBnsQXIvzoYxm2zVQ4c0OgvV_3AN-cAfFBAcR1z7gNxeggRhxtsBP0H_78Bmv0HltmgiT_x2j18f5y2yZrDeL1ex-nThGVJ9UmtWM19yktclkXVpFSitJmYnSUCJKppWtuFbAKRfUWqnBMF5pSwhIYyEdo9vjbxf81wCxL7YuWmga04IfYkGFVPt-WmR79eaoOgAourBvEX4KSSTJhEp_AdEfbZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1678015964</pqid></control><display><type>conference_proceeding</type><title>Location Estimation via Sparse Signal Reconstruction in Subsampled Overcomplete Dictionaries for Wireless 4G Networks</title><source>IEEE Xplore All Conference Series</source><creator>Roth, John ; Tummala, Murali ; McEachen, John ; Scrofani, James ; Hunt, Allison</creator><creatorcontrib>Roth, John ; Tummala, Murali ; McEachen, John ; Scrofani, James ; Hunt, Allison</creatorcontrib><description>We present a simple and effective means for position estimation designed to be deployed in urban and dense multipath environments characteristic of 4G wireless networks. To address the multipath channel of such environments a fingerprinting scheme is proposed. One of the drawbacks to this class of methods is the large initial cost associated with establishing a database matrix. This issue is addressed by using a multi-channel filtering method adapted from the H.264 video standard to recover the incomplete data. Position estimation is accomplished via a modified k-nearest neighbor approach to pattern matching. We show through simulation that not only are we able to achieve compelling fidelity in the reconstructed databases from highly incomplete data, but that we are able to do so at a relatively low computational cost. Finally, our results demonstrate that we are able to achieve accurate position estimates vis-à-vis severe under sampling and noisy channel conditions.</description><identifier>ISSN: 1530-1605</identifier><identifier>EISSN: 2572-6862</identifier><identifier>EISSN: 1530-1605</identifier><identifier>EISBN: 9781479973675</identifier><identifier>EISBN: 147997367X</identifier><identifier>DOI: 10.1109/HICSS.2015.639</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Channels ; Computational efficiency ; Conferences ; Correlation ; database correlation ; Dictionaries ; Estimation ; Filtering ; Fingerprinting ; geolocation ; non-line-of-sight (NLOS) ; overcomplete representations ; Sampling ; Sparse signal reconstruction ; Vectors</subject><ispartof>2015 48th Hawaii International Conference on System Sciences, 2015, p.5432-5438</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7070468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,27907,27908,54538,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7070468$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roth, John</creatorcontrib><creatorcontrib>Tummala, Murali</creatorcontrib><creatorcontrib>McEachen, John</creatorcontrib><creatorcontrib>Scrofani, James</creatorcontrib><creatorcontrib>Hunt, Allison</creatorcontrib><title>Location Estimation via Sparse Signal Reconstruction in Subsampled Overcomplete Dictionaries for Wireless 4G Networks</title><title>2015 48th Hawaii International Conference on System Sciences</title><addtitle>HICSS</addtitle><description>We present a simple and effective means for position estimation designed to be deployed in urban and dense multipath environments characteristic of 4G wireless networks. To address the multipath channel of such environments a fingerprinting scheme is proposed. One of the drawbacks to this class of methods is the large initial cost associated with establishing a database matrix. This issue is addressed by using a multi-channel filtering method adapted from the H.264 video standard to recover the incomplete data. Position estimation is accomplished via a modified k-nearest neighbor approach to pattern matching. We show through simulation that not only are we able to achieve compelling fidelity in the reconstructed databases from highly incomplete data, but that we are able to do so at a relatively low computational cost. Finally, our results demonstrate that we are able to achieve accurate position estimates vis-à-vis severe under sampling and noisy channel conditions.</description><subject>Accuracy</subject><subject>Channels</subject><subject>Computational efficiency</subject><subject>Conferences</subject><subject>Correlation</subject><subject>database correlation</subject><subject>Dictionaries</subject><subject>Estimation</subject><subject>Filtering</subject><subject>Fingerprinting</subject><subject>geolocation</subject><subject>non-line-of-sight (NLOS)</subject><subject>overcomplete representations</subject><subject>Sampling</subject><subject>Sparse signal reconstruction</subject><subject>Vectors</subject><issn>1530-1605</issn><issn>2572-6862</issn><issn>1530-1605</issn><isbn>9781479973675</isbn><isbn>147997367X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkDtPwzAYRQ0CiVK6srB4ZEmxnfg1olLaShWVCIgxcpwvyJDGwU6K-PeUlume4egOB6FrSqaUEn23XM3yfMoI5VOR6hM00VLRTGotUyH5KRoxLlkilGBnaER5ShIqCL9AlzF-EMJIRsUIDWtvTe98i-exd9sj7pzBeWdCBJy799Y0-Bmsb2MfBnsQXIvzoYxm2zVQ4c0OgvV_3AN-cAfFBAcR1z7gNxeggRhxtsBP0H_78Bmv0HltmgiT_x2j18f5y2yZrDeL1ex-nThGVJ9UmtWM19yktclkXVpFSitJmYnSUCJKppWtuFbAKRfUWqnBMF5pSwhIYyEdo9vjbxf81wCxL7YuWmga04IfYkGFVPt-WmR79eaoOgAourBvEX4KSSTJhEp_AdEfbZI</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Roth, John</creator><creator>Tummala, Murali</creator><creator>McEachen, John</creator><creator>Scrofani, James</creator><creator>Hunt, Allison</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>Location Estimation via Sparse Signal Reconstruction in Subsampled Overcomplete Dictionaries for Wireless 4G Networks</title><author>Roth, John ; Tummala, Murali ; McEachen, John ; Scrofani, James ; Hunt, Allison</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-d92f25f5a3fa47fbc80bc70b46ba106b298cd598e51561cc79ea25d9c00e7ace3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Channels</topic><topic>Computational efficiency</topic><topic>Conferences</topic><topic>Correlation</topic><topic>database correlation</topic><topic>Dictionaries</topic><topic>Estimation</topic><topic>Filtering</topic><topic>Fingerprinting</topic><topic>geolocation</topic><topic>non-line-of-sight (NLOS)</topic><topic>overcomplete representations</topic><topic>Sampling</topic><topic>Sparse signal reconstruction</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Roth, John</creatorcontrib><creatorcontrib>Tummala, Murali</creatorcontrib><creatorcontrib>McEachen, John</creatorcontrib><creatorcontrib>Scrofani, James</creatorcontrib><creatorcontrib>Hunt, Allison</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roth, John</au><au>Tummala, Murali</au><au>McEachen, John</au><au>Scrofani, James</au><au>Hunt, Allison</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Location Estimation via Sparse Signal Reconstruction in Subsampled Overcomplete Dictionaries for Wireless 4G Networks</atitle><btitle>2015 48th Hawaii International Conference on System Sciences</btitle><stitle>HICSS</stitle><date>2015-01-01</date><risdate>2015</risdate><spage>5432</spage><epage>5438</epage><pages>5432-5438</pages><issn>1530-1605</issn><eissn>2572-6862</eissn><eissn>1530-1605</eissn><eisbn>9781479973675</eisbn><eisbn>147997367X</eisbn><coden>IEEPAD</coden><abstract>We present a simple and effective means for position estimation designed to be deployed in urban and dense multipath environments characteristic of 4G wireless networks. To address the multipath channel of such environments a fingerprinting scheme is proposed. One of the drawbacks to this class of methods is the large initial cost associated with establishing a database matrix. This issue is addressed by using a multi-channel filtering method adapted from the H.264 video standard to recover the incomplete data. Position estimation is accomplished via a modified k-nearest neighbor approach to pattern matching. We show through simulation that not only are we able to achieve compelling fidelity in the reconstructed databases from highly incomplete data, but that we are able to do so at a relatively low computational cost. Finally, our results demonstrate that we are able to achieve accurate position estimates vis-à-vis severe under sampling and noisy channel conditions.</abstract><pub>IEEE</pub><doi>10.1109/HICSS.2015.639</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1605
ispartof 2015 48th Hawaii International Conference on System Sciences, 2015, p.5432-5438
issn 1530-1605
2572-6862
1530-1605
language eng
recordid cdi_proquest_miscellaneous_1678015964
source IEEE Xplore All Conference Series
subjects Accuracy
Channels
Computational efficiency
Conferences
Correlation
database correlation
Dictionaries
Estimation
Filtering
Fingerprinting
geolocation
non-line-of-sight (NLOS)
overcomplete representations
Sampling
Sparse signal reconstruction
Vectors
title Location Estimation via Sparse Signal Reconstruction in Subsampled Overcomplete Dictionaries for Wireless 4G Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Location%20Estimation%20via%20Sparse%20Signal%20Reconstruction%20in%20Subsampled%20Overcomplete%20Dictionaries%20for%20Wireless%204G%20Networks&rft.btitle=2015%2048th%20Hawaii%20International%20Conference%20on%20System%20Sciences&rft.au=Roth,%20John&rft.date=2015-01-01&rft.spage=5432&rft.epage=5438&rft.pages=5432-5438&rft.issn=1530-1605&rft.eissn=2572-6862&rft.coden=IEEPAD&rft_id=info:doi/10.1109/HICSS.2015.639&rft.eisbn=9781479973675&rft.eisbn_list=147997367X&rft_dat=%3Cproquest_CHZPO%3E1678015964%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-d92f25f5a3fa47fbc80bc70b46ba106b298cd598e51561cc79ea25d9c00e7ace3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1678015964&rft_id=info:pmid/&rft_ieee_id=7070468&rfr_iscdi=true