Loading…

Photo- and Thermo-Dual-Responsive Organic/Inorganic Hybrid Materials

Organic/inorganic hybrid materials based upon stimuli-responsive copolymers have attracted an inceasing attention. Compared with the polymeric materials, these hybrid materials can form aggregates in aqueous solution with much more stable shape-persistance due to the inorganic structure, which facil...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2013-01, Vol.538, p.181-184
Main Authors: Chen, Ye, Yu, Fa Qi, Pei, Mei Shan, Tang, Xin De
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Organic/inorganic hybrid materials based upon stimuli-responsive copolymers have attracted an inceasing attention. Compared with the polymeric materials, these hybrid materials can form aggregates in aqueous solution with much more stable shape-persistance due to the inorganic structure, which facilitate the mass delivery and long-term life. A novel hybrid material based on a new reactive block copolymer, poly(ethylene oxide)-block-poly{3-(trimethoxysilyl)propyl methacrylate-co-N-isopropylacrylamide-co-6-[4-(4-methoxyphenylazo)phenoxy]hexyl methacrylate} [PEO-P(TMSPMA-NIPAM-AzoMA)] was synthesized via atom transfer radical polymerization (ATRP). The vesicles were obtained by self-assembly of the resulting block copolymer in a selective solvent, and then the PTMSPMA block was subjected to hydrolysis and polycondensation reaction to fix vesicle wall in the presence of triethylamine as a catalyst. The photo- and thermo- dual-responsive properties of the vesicles were investigated.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.538.181