Loading…

Molecular dynamics of supercritical water: A computer simulation of vibrational spectra with the flexible BJH potential

Molecular dynamics (MD) computer simulations have been performed for a system of 200 water molecules interacting by means of the Bopp-Jancsó-Heinzinger (BJH) intermolecular interaction potential under supercritical conditions (630 < T < 770 K, or ∼350–500°C) over a very wide range of densities...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 1995-02, Vol.59 (4), p.641-650
Main Authors: Kalinichev, A.G., Heinzinger, K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a358t-79d20e14203fcd4158dc6bcea448708f5dda14ecfef05743032272c7fc6f5f923
cites cdi_FETCH-LOGICAL-a358t-79d20e14203fcd4158dc6bcea448708f5dda14ecfef05743032272c7fc6f5f923
container_end_page 650
container_issue 4
container_start_page 641
container_title Geochimica et cosmochimica acta
container_volume 59
creator Kalinichev, A.G.
Heinzinger, K.
description Molecular dynamics (MD) computer simulations have been performed for a system of 200 water molecules interacting by means of the Bopp-Jancsó-Heinzinger (BJH) intermolecular interaction potential under supercritical conditions (630 < T < 770 K, or ∼350–500°C) over a very wide range of densities (0.17 < ϱ < 1.28 g/cm 3) and pressures (0.25 < P < 30 kbar). The results are compared with available experimental data and simulations using other water models. The flexibility of the BJH water model made it possible to analyze the temperature and density dependencies of the intramolecular geometry and vibrational frequencies of water molecules along with the information on thermodynamic, structural, and kinetic properties of water, usually calculated from MD simulations. With temperature and density (pressure) increase, the average intramolecular OH distance also increases, while the average intramolecular HOH angle decreases. Both effects increase the average dipole moment of a water molecule, which changes from 1.99 to 2.05 Debye at 400°C and 0.1666 g/cm 3 and 0.9718 g/cm 3, respectively. The spectra of intramolecular vibrations are calculated as Fourier transforms of the velocity autocorrelation functions of hydrogen atoms. The frequencies of both symmetric and asymmetric stretching vibrations increase with temperature and decrease with density (pressure), while the frequency of the HOH bending vibrations remains almost constant over the wide range of thermodynamic conditions studied. These findings are in good agreement with available IR and Raman spectroscopic measurements and allow us to expect the BJH potential to be able to predict changes in the vibrational behavior of water molecules in response to changes of thermodynamic parameters covering the entire range of temperatures, densities, and compositions characteristic of hydrothermal systems.
doi_str_mv 10.1016/0016-7037(94)00289-X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_16794802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>001670379400289X</els_id><sourcerecordid>16794802</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-79d20e14203fcd4158dc6bcea448708f5dda14ecfef05743032272c7fc6f5f923</originalsourceid><addsrcrecordid>eNp9kMtKxTAQhoMoeLy8gYusRBfVSZuetC4EFa8obhTchZx0gpG0qUnq0be39YhLN3OB7x-Yj5A9BkcM2PwYxpIJKMRBzQ8B8qrOXtbIjFUiz-qyKNbJ7A_ZJFsxvgGAKEuYkeWDd6gHpwJtvjrVWh2pNzQOPQYdbLJaObpUCcMJPaPat_0wzjTadswk67uJ_rCL8LOMbOxRp6Do0qZXml6RGoefduGQnt_d0N4n7JJVbodsGOUi7v72bfJ8dfl0cZPdP17fXpzdZ6ooq5SJuskBGc-hMLrhrKwaPV9oVJxXAipTNo1iHLVBA6XgBRR5LnItjJ6b0tR5sU32V3f74N8HjEm2Nmp0TnXohyjZXNS8ggnkK1AHH2NAI_tgWxW-JAM5WZaTQjkplDWXP5blyxg7XcVwfOLDYpBRW-w0NjaMImTj7f8HvgGnIIZ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16794802</pqid></control><display><type>article</type><title>Molecular dynamics of supercritical water: A computer simulation of vibrational spectra with the flexible BJH potential</title><source>ScienceDirect Freedom Collection</source><creator>Kalinichev, A.G. ; Heinzinger, K.</creator><creatorcontrib>Kalinichev, A.G. ; Heinzinger, K.</creatorcontrib><description><![CDATA[Molecular dynamics (MD) computer simulations have been performed for a system of 200 water molecules interacting by means of the Bopp-Jancsó-Heinzinger (BJH) intermolecular interaction potential under supercritical conditions (630 < T < 770 K, or ∼350–500°C) over a very wide range of densities (0.17 < ϱ < 1.28 g/cm 3) and pressures (0.25 < P < 30 kbar). The results are compared with available experimental data and simulations using other water models. The flexibility of the BJH water model made it possible to analyze the temperature and density dependencies of the intramolecular geometry and vibrational frequencies of water molecules along with the information on thermodynamic, structural, and kinetic properties of water, usually calculated from MD simulations. With temperature and density (pressure) increase, the average intramolecular OH distance also increases, while the average intramolecular HOH angle decreases. Both effects increase the average dipole moment of a water molecule, which changes from 1.99 to 2.05 Debye at 400°C and 0.1666 g/cm 3 and 0.9718 g/cm 3, respectively. The spectra of intramolecular vibrations are calculated as Fourier transforms of the velocity autocorrelation functions of hydrogen atoms. The frequencies of both symmetric and asymmetric stretching vibrations increase with temperature and decrease with density (pressure), while the frequency of the HOH bending vibrations remains almost constant over the wide range of thermodynamic conditions studied. These findings are in good agreement with available IR and Raman spectroscopic measurements and allow us to expect the BJH potential to be able to predict changes in the vibrational behavior of water molecules in response to changes of thermodynamic parameters covering the entire range of temperatures, densities, and compositions characteristic of hydrothermal systems.]]></description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/0016-7037(94)00289-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Geochimica et cosmochimica acta, 1995-02, Vol.59 (4), p.641-650</ispartof><rights>1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a358t-79d20e14203fcd4158dc6bcea448708f5dda14ecfef05743032272c7fc6f5f923</citedby><cites>FETCH-LOGICAL-a358t-79d20e14203fcd4158dc6bcea448708f5dda14ecfef05743032272c7fc6f5f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kalinichev, A.G.</creatorcontrib><creatorcontrib>Heinzinger, K.</creatorcontrib><title>Molecular dynamics of supercritical water: A computer simulation of vibrational spectra with the flexible BJH potential</title><title>Geochimica et cosmochimica acta</title><description><![CDATA[Molecular dynamics (MD) computer simulations have been performed for a system of 200 water molecules interacting by means of the Bopp-Jancsó-Heinzinger (BJH) intermolecular interaction potential under supercritical conditions (630 < T < 770 K, or ∼350–500°C) over a very wide range of densities (0.17 < ϱ < 1.28 g/cm 3) and pressures (0.25 < P < 30 kbar). The results are compared with available experimental data and simulations using other water models. The flexibility of the BJH water model made it possible to analyze the temperature and density dependencies of the intramolecular geometry and vibrational frequencies of water molecules along with the information on thermodynamic, structural, and kinetic properties of water, usually calculated from MD simulations. With temperature and density (pressure) increase, the average intramolecular OH distance also increases, while the average intramolecular HOH angle decreases. Both effects increase the average dipole moment of a water molecule, which changes from 1.99 to 2.05 Debye at 400°C and 0.1666 g/cm 3 and 0.9718 g/cm 3, respectively. The spectra of intramolecular vibrations are calculated as Fourier transforms of the velocity autocorrelation functions of hydrogen atoms. The frequencies of both symmetric and asymmetric stretching vibrations increase with temperature and decrease with density (pressure), while the frequency of the HOH bending vibrations remains almost constant over the wide range of thermodynamic conditions studied. These findings are in good agreement with available IR and Raman spectroscopic measurements and allow us to expect the BJH potential to be able to predict changes in the vibrational behavior of water molecules in response to changes of thermodynamic parameters covering the entire range of temperatures, densities, and compositions characteristic of hydrothermal systems.]]></description><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxTAQhoMoeLy8gYusRBfVSZuetC4EFa8obhTchZx0gpG0qUnq0be39YhLN3OB7x-Yj5A9BkcM2PwYxpIJKMRBzQ8B8qrOXtbIjFUiz-qyKNbJ7A_ZJFsxvgGAKEuYkeWDd6gHpwJtvjrVWh2pNzQOPQYdbLJaObpUCcMJPaPat_0wzjTadswk67uJ_rCL8LOMbOxRp6Do0qZXml6RGoefduGQnt_d0N4n7JJVbodsGOUi7v72bfJ8dfl0cZPdP17fXpzdZ6ooq5SJuskBGc-hMLrhrKwaPV9oVJxXAipTNo1iHLVBA6XgBRR5LnItjJ6b0tR5sU32V3f74N8HjEm2Nmp0TnXohyjZXNS8ggnkK1AHH2NAI_tgWxW-JAM5WZaTQjkplDWXP5blyxg7XcVwfOLDYpBRW-w0NjaMImTj7f8HvgGnIIZ7</recordid><startdate>19950201</startdate><enddate>19950201</enddate><creator>Kalinichev, A.G.</creator><creator>Heinzinger, K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>19950201</creationdate><title>Molecular dynamics of supercritical water: A computer simulation of vibrational spectra with the flexible BJH potential</title><author>Kalinichev, A.G. ; Heinzinger, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-79d20e14203fcd4158dc6bcea448708f5dda14ecfef05743032272c7fc6f5f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalinichev, A.G.</creatorcontrib><creatorcontrib>Heinzinger, K.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalinichev, A.G.</au><au>Heinzinger, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics of supercritical water: A computer simulation of vibrational spectra with the flexible BJH potential</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>1995-02-01</date><risdate>1995</risdate><volume>59</volume><issue>4</issue><spage>641</spage><epage>650</epage><pages>641-650</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract><![CDATA[Molecular dynamics (MD) computer simulations have been performed for a system of 200 water molecules interacting by means of the Bopp-Jancsó-Heinzinger (BJH) intermolecular interaction potential under supercritical conditions (630 < T < 770 K, or ∼350–500°C) over a very wide range of densities (0.17 < ϱ < 1.28 g/cm 3) and pressures (0.25 < P < 30 kbar). The results are compared with available experimental data and simulations using other water models. The flexibility of the BJH water model made it possible to analyze the temperature and density dependencies of the intramolecular geometry and vibrational frequencies of water molecules along with the information on thermodynamic, structural, and kinetic properties of water, usually calculated from MD simulations. With temperature and density (pressure) increase, the average intramolecular OH distance also increases, while the average intramolecular HOH angle decreases. Both effects increase the average dipole moment of a water molecule, which changes from 1.99 to 2.05 Debye at 400°C and 0.1666 g/cm 3 and 0.9718 g/cm 3, respectively. The spectra of intramolecular vibrations are calculated as Fourier transforms of the velocity autocorrelation functions of hydrogen atoms. The frequencies of both symmetric and asymmetric stretching vibrations increase with temperature and decrease with density (pressure), while the frequency of the HOH bending vibrations remains almost constant over the wide range of thermodynamic conditions studied. These findings are in good agreement with available IR and Raman spectroscopic measurements and allow us to expect the BJH potential to be able to predict changes in the vibrational behavior of water molecules in response to changes of thermodynamic parameters covering the entire range of temperatures, densities, and compositions characteristic of hydrothermal systems.]]></abstract><pub>Elsevier Ltd</pub><doi>10.1016/0016-7037(94)00289-X</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 1995-02, Vol.59 (4), p.641-650
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_16794802
source ScienceDirect Freedom Collection
title Molecular dynamics of supercritical water: A computer simulation of vibrational spectra with the flexible BJH potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20of%20supercritical%20water:%20A%20computer%20simulation%20of%20vibrational%20spectra%20with%20the%20flexible%20BJH%20potential&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Kalinichev,%20A.G.&rft.date=1995-02-01&rft.volume=59&rft.issue=4&rft.spage=641&rft.epage=650&rft.pages=641-650&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/0016-7037(94)00289-X&rft_dat=%3Cproquest_cross%3E16794802%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a358t-79d20e14203fcd4158dc6bcea448708f5dda14ecfef05743032272c7fc6f5f923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16794802&rft_id=info:pmid/&rfr_iscdi=true