Loading…

Asymptotics for nonparametric and semiparametric fixed effects panel models

In this paper, we investigate the problem of estimating nonparametric and semiparametric panel data models with fixed effects. We focus on establishing the asymptotic results for estimators using smooth backfitting methods. We consider two estimators for the smooth unknown function in nonparametric...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2015-04, Vol.185 (2), p.420-434
Main Authors: Li, Cong, Liang, Zhongwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-b5fe78d8508b55a393a47e6b5a63f652d3eb2b7d1de9f0956b3837a0a90112ea3
cites cdi_FETCH-LOGICAL-c434t-b5fe78d8508b55a393a47e6b5a63f652d3eb2b7d1de9f0956b3837a0a90112ea3
container_end_page 434
container_issue 2
container_start_page 420
container_title Journal of econometrics
container_volume 185
creator Li, Cong
Liang, Zhongwen
description In this paper, we investigate the problem of estimating nonparametric and semiparametric panel data models with fixed effects. We focus on establishing the asymptotic results for estimators using smooth backfitting methods. We consider two estimators for the smooth unknown function in nonparametric panel regressions. One is a local linear estimator constructed similar as the one in Mammen et al. (2009) which was proposed for the additive nonparametric panel model. The other is the local profile likelihood based estimator proposed by Henderson et al. (2008) (HCL hereafter). We build the link and compare the difference between these two estimators which are constructed under different sets of conditions. We put both of these estimators in the smooth backfitting algorithm framework discussed in Mammen et al. (1999). Following the recently developed theories on backfitting kernel estimates in Mammen et al. (2009), we establish the asymptotic normality of these estimators, and hence verify the conjectures made by HCL and complement their paper. Further, we consider a partially linear fixed effects panel data model with the nonparametric component estimated using the methods discussed in the first part of the paper. We give the asymptotic result for the estimators of finite dimensional parameters, which shows that the first-step plug-in estimators will not affect the asymptotic variance in the second-step estimation.
doi_str_mv 10.1016/j.jeconom.2014.12.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680163685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407614002942</els_id><sourcerecordid>1680163685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-b5fe78d8508b55a393a47e6b5a63f652d3eb2b7d1de9f0956b3837a0a90112ea3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVJoJs0PyFg6KUXOyPrw_KpLKFJQxZyac5ClkYgY1uu5C3Nv4_C5hB66WlgeN6XmYeQawoNBSpvxmZEG5c4Ny1Q3tC2AeCfyI6qrq2l6sUZ2QEDXnPo5GdykfMIAIIrtiOP-_wyr1vcgs2Vj6la4rKaZGbcUrCVWVyVcQ4fVj78RVeh92i3XK1mwamao8MpfyHn3kwZr97nJXm--_Hr9md9eLp_uN0fassZ3-pBeOyUUwLUIIRhPTO8QzkII5mXonUMh3boHHXYe-iFHJhinQHTA6UtGnZJvp161xR_HzFveg7Z4jSVW-IxaypV0cKkEgX9-g86xmNaynWFEp0EzhktlDhRNsWcE3q9pjCb9KIp6DfFetTvivWbYk1bXRSX3PdTrjyPfwImnW3AxaILqdjRLob_NLwCpn-Hgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1657604431</pqid></control><display><type>article</type><title>Asymptotics for nonparametric and semiparametric fixed effects panel models</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Li, Cong ; Liang, Zhongwen</creator><creatorcontrib>Li, Cong ; Liang, Zhongwen</creatorcontrib><description>In this paper, we investigate the problem of estimating nonparametric and semiparametric panel data models with fixed effects. We focus on establishing the asymptotic results for estimators using smooth backfitting methods. We consider two estimators for the smooth unknown function in nonparametric panel regressions. One is a local linear estimator constructed similar as the one in Mammen et al. (2009) which was proposed for the additive nonparametric panel model. The other is the local profile likelihood based estimator proposed by Henderson et al. (2008) (HCL hereafter). We build the link and compare the difference between these two estimators which are constructed under different sets of conditions. We put both of these estimators in the smooth backfitting algorithm framework discussed in Mammen et al. (1999). Following the recently developed theories on backfitting kernel estimates in Mammen et al. (2009), we establish the asymptotic normality of these estimators, and hence verify the conjectures made by HCL and complement their paper. Further, we consider a partially linear fixed effects panel data model with the nonparametric component estimated using the methods discussed in the first part of the paper. We give the asymptotic result for the estimators of finite dimensional parameters, which shows that the first-step plug-in estimators will not affect the asymptotic variance in the second-step estimation.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2014.12.004</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Asymptotic methods ; Backfitting ; Econometrics ; Economic analysis ; Economic theory ; Estimating techniques ; Fixed effects ; Nonparametric estimation ; Panel data ; Regression analysis ; Statistical methods ; Studies ; Variance analysis</subject><ispartof>Journal of econometrics, 2015-04, Vol.185 (2), p.420-434</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-b5fe78d8508b55a393a47e6b5a63f652d3eb2b7d1de9f0956b3837a0a90112ea3</citedby><cites>FETCH-LOGICAL-c434t-b5fe78d8508b55a393a47e6b5a63f652d3eb2b7d1de9f0956b3837a0a90112ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407614002942$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids></links><search><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Liang, Zhongwen</creatorcontrib><title>Asymptotics for nonparametric and semiparametric fixed effects panel models</title><title>Journal of econometrics</title><description>In this paper, we investigate the problem of estimating nonparametric and semiparametric panel data models with fixed effects. We focus on establishing the asymptotic results for estimators using smooth backfitting methods. We consider two estimators for the smooth unknown function in nonparametric panel regressions. One is a local linear estimator constructed similar as the one in Mammen et al. (2009) which was proposed for the additive nonparametric panel model. The other is the local profile likelihood based estimator proposed by Henderson et al. (2008) (HCL hereafter). We build the link and compare the difference between these two estimators which are constructed under different sets of conditions. We put both of these estimators in the smooth backfitting algorithm framework discussed in Mammen et al. (1999). Following the recently developed theories on backfitting kernel estimates in Mammen et al. (2009), we establish the asymptotic normality of these estimators, and hence verify the conjectures made by HCL and complement their paper. Further, we consider a partially linear fixed effects panel data model with the nonparametric component estimated using the methods discussed in the first part of the paper. We give the asymptotic result for the estimators of finite dimensional parameters, which shows that the first-step plug-in estimators will not affect the asymptotic variance in the second-step estimation.</description><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Backfitting</subject><subject>Econometrics</subject><subject>Economic analysis</subject><subject>Economic theory</subject><subject>Estimating techniques</subject><subject>Fixed effects</subject><subject>Nonparametric estimation</subject><subject>Panel data</subject><subject>Regression analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Variance analysis</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkE1r3DAQhkVJoJs0PyFg6KUXOyPrw_KpLKFJQxZyac5ClkYgY1uu5C3Nv4_C5hB66WlgeN6XmYeQawoNBSpvxmZEG5c4Ny1Q3tC2AeCfyI6qrq2l6sUZ2QEDXnPo5GdykfMIAIIrtiOP-_wyr1vcgs2Vj6la4rKaZGbcUrCVWVyVcQ4fVj78RVeh92i3XK1mwamao8MpfyHn3kwZr97nJXm--_Hr9md9eLp_uN0fassZ3-pBeOyUUwLUIIRhPTO8QzkII5mXonUMh3boHHXYe-iFHJhinQHTA6UtGnZJvp161xR_HzFveg7Z4jSVW-IxaypV0cKkEgX9-g86xmNaynWFEp0EzhktlDhRNsWcE3q9pjCb9KIp6DfFetTvivWbYk1bXRSX3PdTrjyPfwImnW3AxaILqdjRLob_NLwCpn-Hgw</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Li, Cong</creator><creator>Liang, Zhongwen</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20150401</creationdate><title>Asymptotics for nonparametric and semiparametric fixed effects panel models</title><author>Li, Cong ; Liang, Zhongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-b5fe78d8508b55a393a47e6b5a63f652d3eb2b7d1de9f0956b3837a0a90112ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Backfitting</topic><topic>Econometrics</topic><topic>Economic analysis</topic><topic>Economic theory</topic><topic>Estimating techniques</topic><topic>Fixed effects</topic><topic>Nonparametric estimation</topic><topic>Panel data</topic><topic>Regression analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Cong</creatorcontrib><creatorcontrib>Liang, Zhongwen</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Cong</au><au>Liang, Zhongwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics for nonparametric and semiparametric fixed effects panel models</atitle><jtitle>Journal of econometrics</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>185</volume><issue>2</issue><spage>420</spage><epage>434</epage><pages>420-434</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>In this paper, we investigate the problem of estimating nonparametric and semiparametric panel data models with fixed effects. We focus on establishing the asymptotic results for estimators using smooth backfitting methods. We consider two estimators for the smooth unknown function in nonparametric panel regressions. One is a local linear estimator constructed similar as the one in Mammen et al. (2009) which was proposed for the additive nonparametric panel model. The other is the local profile likelihood based estimator proposed by Henderson et al. (2008) (HCL hereafter). We build the link and compare the difference between these two estimators which are constructed under different sets of conditions. We put both of these estimators in the smooth backfitting algorithm framework discussed in Mammen et al. (1999). Following the recently developed theories on backfitting kernel estimates in Mammen et al. (2009), we establish the asymptotic normality of these estimators, and hence verify the conjectures made by HCL and complement their paper. Further, we consider a partially linear fixed effects panel data model with the nonparametric component estimated using the methods discussed in the first part of the paper. We give the asymptotic result for the estimators of finite dimensional parameters, which shows that the first-step plug-in estimators will not affect the asymptotic variance in the second-step estimation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2014.12.004</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2015-04, Vol.185 (2), p.420-434
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_1680163685
source International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Algorithms
Asymptotic methods
Backfitting
Econometrics
Economic analysis
Economic theory
Estimating techniques
Fixed effects
Nonparametric estimation
Panel data
Regression analysis
Statistical methods
Studies
Variance analysis
title Asymptotics for nonparametric and semiparametric fixed effects panel models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20for%20nonparametric%20and%20semiparametric%20fixed%20effects%20panel%20models&rft.jtitle=Journal%20of%20econometrics&rft.au=Li,%20Cong&rft.date=2015-04-01&rft.volume=185&rft.issue=2&rft.spage=420&rft.epage=434&rft.pages=420-434&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2014.12.004&rft_dat=%3Cproquest_cross%3E1680163685%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-b5fe78d8508b55a393a47e6b5a63f652d3eb2b7d1de9f0956b3837a0a90112ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1657604431&rft_id=info:pmid/&rfr_iscdi=true