Loading…

Nonlinear stability analyses of Turing patterns for a mussel-algae model

A particular interaction–diffusion mussel-algae model system for the development of spontaneous stationary young mussel bed patterning on a homogeneous substrate covered by a quiescent marine layer containing algae as a food source is investigated employing weakly nonlinear diffusive instability ana...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical biology 2015-05, Vol.70 (6), p.1249-1294
Main Authors: Cangelosi, Richard A., Wollkind, David J., Kealy-Dichone, Bonni J., Chaiya, Inthira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-ced3fe902c9d20efa4f254e2ecbd48a32c9c8dc9b019ffb03a7b749bc4f9306b3
cites cdi_FETCH-LOGICAL-c545t-ced3fe902c9d20efa4f254e2ecbd48a32c9c8dc9b019ffb03a7b749bc4f9306b3
container_end_page 1294
container_issue 6
container_start_page 1249
container_title Journal of mathematical biology
container_volume 70
creator Cangelosi, Richard A.
Wollkind, David J.
Kealy-Dichone, Bonni J.
Chaiya, Inthira
description A particular interaction–diffusion mussel-algae model system for the development of spontaneous stationary young mussel bed patterning on a homogeneous substrate covered by a quiescent marine layer containing algae as a food source is investigated employing weakly nonlinear diffusive instability analyses. The main results of these analyses can be represented by plots in the ratio of mussel motility to algae lateral diffusion versus the algae reservoir concentration dimensionless parameter space. Regions corresponding to bare sediment and mussel patterns consisting of rhombic or hexagonal arrays and isolated clusters of clumps or gaps, an intermediate labyrinthine state, and homogeneous distributions of low to high density may be identified in this parameter space. Then those Turing diffusive instability predictions are compared with both relevant field and laboratory experimental evidence and existing numerical simulations involving differential flow migrating band instabilities for the associated interaction–dispersion–advection mussel-algae model system as well as placed in the context of the results from some recent nonlinear pattern formation studies.
doi_str_mv 10.1007/s00285-014-0794-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1680445237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3628437521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-ced3fe902c9d20efa4f254e2ecbd48a32c9c8dc9b019ffb03a7b749bc4f9306b3</originalsourceid><addsrcrecordid>eNqNkUtrGzEUhUVpaBwnP6CbIugmG7VXj3loWUxeYJKNsxYazZUZo5lxpZmF_33l2g2hUOhKID4dHc5HyGcO3zhA9T0BiLpgwBWDSitWfSALrqRgXPHyI1mABMnKmotLcpXSDoBXheafyKVQtRSFEgvy-DwOoRvQRpom23Shmw7UDjYcEiY6erqZYzds6d5OE8YhUT9Gamk_p4SB2bC1SPuxxXBNLrwNCW_O55K83t9tVo9s_fLwtPqxZq5QxcQcttKjBuF0KwC9VT4XQYGuaVVtZb53det0A1x734C0VVMp3TjltYSykUtye8rdx_HnjGkyfZcchmAHHOdkeFmDUoWQ1X-gZcEFz4tl9Otf6G6cY57hN6Wk1rlPpviJcnFMKaI3-9j1Nh4MB3M0Yk5GTDZijkbMscSXc_Lc9Ni-vfijIAPiBKT9cWmM777-Z-ovsuOVvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664399019</pqid></control><display><type>article</type><title>Nonlinear stability analyses of Turing patterns for a mussel-algae model</title><source>Springer Nature</source><creator>Cangelosi, Richard A. ; Wollkind, David J. ; Kealy-Dichone, Bonni J. ; Chaiya, Inthira</creator><creatorcontrib>Cangelosi, Richard A. ; Wollkind, David J. ; Kealy-Dichone, Bonni J. ; Chaiya, Inthira</creatorcontrib><description>A particular interaction–diffusion mussel-algae model system for the development of spontaneous stationary young mussel bed patterning on a homogeneous substrate covered by a quiescent marine layer containing algae as a food source is investigated employing weakly nonlinear diffusive instability analyses. The main results of these analyses can be represented by plots in the ratio of mussel motility to algae lateral diffusion versus the algae reservoir concentration dimensionless parameter space. Regions corresponding to bare sediment and mussel patterns consisting of rhombic or hexagonal arrays and isolated clusters of clumps or gaps, an intermediate labyrinthine state, and homogeneous distributions of low to high density may be identified in this parameter space. Then those Turing diffusive instability predictions are compared with both relevant field and laboratory experimental evidence and existing numerical simulations involving differential flow migrating band instabilities for the associated interaction–dispersion–advection mussel-algae model system as well as placed in the context of the results from some recent nonlinear pattern formation studies.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-014-0794-7</identifier><identifier>PMID: 24832542</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Animals ; Applications of Mathematics ; Biostatistics ; Chlamydomonas - physiology ; Computer Simulation ; Diffusion ; Food Chain ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Movement ; Mytilus edulis - physiology ; Nonlinear Dynamics ; Pattern Recognition, Automated - statistics &amp; numerical data</subject><ispartof>Journal of mathematical biology, 2015-05, Vol.70 (6), p.1249-1294</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-ced3fe902c9d20efa4f254e2ecbd48a32c9c8dc9b019ffb03a7b749bc4f9306b3</citedby><cites>FETCH-LOGICAL-c545t-ced3fe902c9d20efa4f254e2ecbd48a32c9c8dc9b019ffb03a7b749bc4f9306b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24832542$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cangelosi, Richard A.</creatorcontrib><creatorcontrib>Wollkind, David J.</creatorcontrib><creatorcontrib>Kealy-Dichone, Bonni J.</creatorcontrib><creatorcontrib>Chaiya, Inthira</creatorcontrib><title>Nonlinear stability analyses of Turing patterns for a mussel-algae model</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>A particular interaction–diffusion mussel-algae model system for the development of spontaneous stationary young mussel bed patterning on a homogeneous substrate covered by a quiescent marine layer containing algae as a food source is investigated employing weakly nonlinear diffusive instability analyses. The main results of these analyses can be represented by plots in the ratio of mussel motility to algae lateral diffusion versus the algae reservoir concentration dimensionless parameter space. Regions corresponding to bare sediment and mussel patterns consisting of rhombic or hexagonal arrays and isolated clusters of clumps or gaps, an intermediate labyrinthine state, and homogeneous distributions of low to high density may be identified in this parameter space. Then those Turing diffusive instability predictions are compared with both relevant field and laboratory experimental evidence and existing numerical simulations involving differential flow migrating band instabilities for the associated interaction–dispersion–advection mussel-algae model system as well as placed in the context of the results from some recent nonlinear pattern formation studies.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applications of Mathematics</subject><subject>Biostatistics</subject><subject>Chlamydomonas - physiology</subject><subject>Computer Simulation</subject><subject>Diffusion</subject><subject>Food Chain</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Movement</subject><subject>Mytilus edulis - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Pattern Recognition, Automated - statistics &amp; numerical data</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtrGzEUhUVpaBwnP6CbIugmG7VXj3loWUxeYJKNsxYazZUZo5lxpZmF_33l2g2hUOhKID4dHc5HyGcO3zhA9T0BiLpgwBWDSitWfSALrqRgXPHyI1mABMnKmotLcpXSDoBXheafyKVQtRSFEgvy-DwOoRvQRpom23Shmw7UDjYcEiY6erqZYzds6d5OE8YhUT9Gamk_p4SB2bC1SPuxxXBNLrwNCW_O55K83t9tVo9s_fLwtPqxZq5QxcQcttKjBuF0KwC9VT4XQYGuaVVtZb53det0A1x734C0VVMp3TjltYSykUtye8rdx_HnjGkyfZcchmAHHOdkeFmDUoWQ1X-gZcEFz4tl9Otf6G6cY57hN6Wk1rlPpviJcnFMKaI3-9j1Nh4MB3M0Yk5GTDZijkbMscSXc_Lc9Ni-vfijIAPiBKT9cWmM777-Z-ovsuOVvA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Cangelosi, Richard A.</creator><creator>Wollkind, David J.</creator><creator>Kealy-Dichone, Bonni J.</creator><creator>Chaiya, Inthira</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20150501</creationdate><title>Nonlinear stability analyses of Turing patterns for a mussel-algae model</title><author>Cangelosi, Richard A. ; Wollkind, David J. ; Kealy-Dichone, Bonni J. ; Chaiya, Inthira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-ced3fe902c9d20efa4f254e2ecbd48a32c9c8dc9b019ffb03a7b749bc4f9306b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applications of Mathematics</topic><topic>Biostatistics</topic><topic>Chlamydomonas - physiology</topic><topic>Computer Simulation</topic><topic>Diffusion</topic><topic>Food Chain</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Movement</topic><topic>Mytilus edulis - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Pattern Recognition, Automated - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cangelosi, Richard A.</creatorcontrib><creatorcontrib>Wollkind, David J.</creatorcontrib><creatorcontrib>Kealy-Dichone, Bonni J.</creatorcontrib><creatorcontrib>Chaiya, Inthira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cangelosi, Richard A.</au><au>Wollkind, David J.</au><au>Kealy-Dichone, Bonni J.</au><au>Chaiya, Inthira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear stability analyses of Turing patterns for a mussel-algae model</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>70</volume><issue>6</issue><spage>1249</spage><epage>1294</epage><pages>1249-1294</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>A particular interaction–diffusion mussel-algae model system for the development of spontaneous stationary young mussel bed patterning on a homogeneous substrate covered by a quiescent marine layer containing algae as a food source is investigated employing weakly nonlinear diffusive instability analyses. The main results of these analyses can be represented by plots in the ratio of mussel motility to algae lateral diffusion versus the algae reservoir concentration dimensionless parameter space. Regions corresponding to bare sediment and mussel patterns consisting of rhombic or hexagonal arrays and isolated clusters of clumps or gaps, an intermediate labyrinthine state, and homogeneous distributions of low to high density may be identified in this parameter space. Then those Turing diffusive instability predictions are compared with both relevant field and laboratory experimental evidence and existing numerical simulations involving differential flow migrating band instabilities for the associated interaction–dispersion–advection mussel-algae model system as well as placed in the context of the results from some recent nonlinear pattern formation studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24832542</pmid><doi>10.1007/s00285-014-0794-7</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2015-05, Vol.70 (6), p.1249-1294
issn 0303-6812
1432-1416
language eng
recordid cdi_proquest_miscellaneous_1680445237
source Springer Nature
subjects Algorithms
Animals
Applications of Mathematics
Biostatistics
Chlamydomonas - physiology
Computer Simulation
Diffusion
Food Chain
Mathematical and Computational Biology
Mathematical Concepts
Mathematics
Mathematics and Statistics
Models, Biological
Movement
Mytilus edulis - physiology
Nonlinear Dynamics
Pattern Recognition, Automated - statistics & numerical data
title Nonlinear stability analyses of Turing patterns for a mussel-algae model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20stability%20analyses%20of%20Turing%20patterns%20for%20a%20mussel-algae%20model&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Cangelosi,%20Richard%20A.&rft.date=2015-05-01&rft.volume=70&rft.issue=6&rft.spage=1249&rft.epage=1294&rft.pages=1249-1294&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-014-0794-7&rft_dat=%3Cproquest_cross%3E3628437521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-ced3fe902c9d20efa4f254e2ecbd48a32c9c8dc9b019ffb03a7b749bc4f9306b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1664399019&rft_id=info:pmid/24832542&rfr_iscdi=true