Loading…

Enhanced Biological Straw Saccharification Through Coculturing of Lignocellulose-Degrading Microorganisms

Lignocellulosic waste (LCW) is an abundant, low-cost, and inedible substrate for the induction of lignocellulolytic enzymes for cellulosic bioethanol production using an efficient, environmentally friendly, and economical biological approach. In this study, 30 different lignocellulose-degrading bact...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2015-04, Vol.175 (8), p.3709-3728
Main Authors: Taha, Mohamed, Shahsavari, Esmaeil, Al-Hothaly, Khalid, Mouradov, Aidyn, Smith, Andrew T, Ball, Andrew S, Adetutu, Eric M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lignocellulosic waste (LCW) is an abundant, low-cost, and inedible substrate for the induction of lignocellulolytic enzymes for cellulosic bioethanol production using an efficient, environmentally friendly, and economical biological approach. In this study, 30 different lignocellulose-degrading bacterial and 18 fungal isolates were quantitatively screened individually for the saccharification of four different ball-milled straw substrates: wheat, rice, sugarcane, and pea straw. Rice and sugarcane straws which had similar Fourier transform-infrared spectroscopy profiles were more degradable, and resulted in more hydrolytic enzyme production than wheat and pea straws. Crude enzyme produced on native straws performed better than those on artificial substrates (such as cellulose and xylan). Four fungal and five bacterial isolates were selected (based on their high strawase activities) for constructing dual and triple microbial combinations to investigate microbial synergistic effects on saccharification. Combinations such as FUNG16-FUNG17 (Neosartorya fischeri–Myceliophthora thermophila) and RMIT10-RMIT11 (Aeromonas hydrophila–Pseudomonas poae) enhanced saccharification (3- and 6.6-folds, respectively) compared with their monocultures indicating the beneficial effects of synergism between those isolates. Dual isolate combinations were more efficient at straw saccharification than triple combinations in both bacterial and fungal assays. Overall, co-culturing can result in significant increases in saccharification which may offer significant commercial potential for the use of microbial consortia.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-015-1539-9