Loading…
Establishing a baseline for early detection of non-indigenous species in ports of the Canadian Arctic
The combination of global warming, resource exploitation and the resulting increase in Arctic shipping activity are expected to increase the risk of exotic species introductions to Arctic waters in the near future. Here, we provide for the first time a benthic invertebrate survey for non-indigenous...
Saved in:
Published in: | Aquatic invasions 2014-09, Vol.9 (3), p.327-342 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The combination of global warming, resource exploitation and the resulting increase in Arctic shipping activity are expected to increase the risk of exotic species introductions to Arctic waters in the near future. Here, we provide for the first time a benthic invertebrate survey for non-indigenous species (NIS) from the Canadian Arctic coasts, incorporating historical information to identify new records. The top three ports at highest risk for introduction of NIS of the Canadian Arctic were surveyed: Churchill (Manitoba), Deception Bay (Quebec) and Iqaluit (Nunavut). A total of 236 genera and species were identified. Based on cross referencing comparisons of contemporary and historical information on species composition and distributions, 14.4% of the taxa identified can be considered new records within the port regions surveyed and 7.2% within the more extended, adjacent surrounding regions. Increased survey effort is the most likely explanation for the majority of new occurrences, however, a small number of records (n=7) were new mentions for Canada and were categorized as cryptogenic since we could not confidently describe them as being either native or introduced. Further research is required to better understand the status of these new taxa. This study provides a benchmark for early detection for benthic invertebrates in the region. Significant costs and intensive labor are involved in monitoring and in early detection surveys, but they provide a great opportunity for identifying native and introduced biodiversity, crucial to analyzing the changes taking place along one of the longest coastlines in the world, the Canadian Arctic coast. |
---|---|
ISSN: | 1818-5487 1798-6540 1818-5487 |
DOI: | 10.3391/ai.2014.9.3.08 |