Loading…

CR3 (CD11b/CD18) expressed by cytotoxic T cells and natural killer cells is upregulated in a manner similar to neutrophil CR3 following stimulation with various activating agents

CR3 (CD11b/CD18) functions both as an iC3b-receptor and as an adhesion molecule for cellular ligands such as ICAM-1. Although CR3 has been well characterized on phagocytic cells, much less is known about CR3 on lymphocytes. In this study, the expression of CR3 was examined on resting and stimulated...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical immunology 1993-05, Vol.13 (3), p.175-184
Main Authors: MUTO, S, VETVICKA, V, ROSS, G. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CR3 (CD11b/CD18) functions both as an iC3b-receptor and as an adhesion molecule for cellular ligands such as ICAM-1. Although CR3 has been well characterized on phagocytic cells, much less is known about CR3 on lymphocytes. In this study, the expression of CR3 was examined on resting and stimulated B, T, and natural killer (NK) cells by three-color flow cytometry. Biotinylated anti-CR3 mAb and streptavidin-FITC were used in combination with anti-CD3 mAb conjugated with peridinin chlorophyll-alpha protein (PerCP) and phycoerythrin-labeled mAbs to CD4, CD8, CD19, or CD56. Among resting lymphocytes, CR3 was expressed on nearly all NK cells (CD56+CD3-), 1% of CD4+CD3+ helper T cells, 7% of CD8+CD3+ cytotoxic T cells, and 20% of B cells (CD19+). Among the 5% of T cells (CD3+) expressing CR3, the majority was CD56+. Incubation of PBMC for 30 min with PMA induced a three- to fivefold increase in CR3 expression on NK cells and a twofold increase on T cells but did not change the expression of CR3 on B cells. This effect of PMA was not blocked by the presence of cycloheximide, suggesting the presence of cytoplasmic (granule) stores of CR3 in these lymphoid cells resembling those previously reported in neutrophils and monocytes. When PBMC were incubated with rIFN-alpha, rIL-2, beta-glucan, or high concentrations of LPS, expression of CR3 on NK cells increased significantly, but > or = 4 hr of stimulation was required. Other cytokines (rIFN-gamma, rIL-1, rIL-4, rIL-6, TNF-alpha) and rC5a had no significant effect on CR3 expression. Among NK cells, both the CD56bright and the CD56dim cells expressed CR3, and the expression of CR3 on both of these NK cell subsets was increased in a similar manner by PMA. However, rIL-2 stimulated a greater increase in CR3 expression on CD56bright cells than on CD56dim cells. These studies suggest that CR3 expressed by NK cells or cytotoxic T cells resembles phagocyte CR3 in that cellular activation stimulates increased surface expression of CR3 derived from cytoplasmic reserves of the receptor.
ISSN:0271-9142
1573-2592
DOI:10.1007/BF00919970