Loading…

Using linear polarization for sensing and sizing dielectric nanoparticles

The spectral evolution of the degree of linear polarization (PL) at a scattering angle of 90° is studied numerically for high refractive index (HRI) dielectric spherical nanoparticles. The behaviour of PL(90°) is analysed as a function of the refractive index of the surrounding medium and the partic...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2015-04, Vol.23 (7), p.9157-9166
Main Authors: Barreda, Ángela I, Sanz, Juan M, González, Francisco
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spectral evolution of the degree of linear polarization (PL) at a scattering angle of 90° is studied numerically for high refractive index (HRI) dielectric spherical nanoparticles. The behaviour of PL(90°) is analysed as a function of the refractive index of the surrounding medium and the particle radius, and it is compared with the more conventional extinction efficiency parameter (Qext), usually used for sensing applications. We focus on the spectral region where both electric and magnetic resonances of order not higher than two are located for various semiconductor materials with low absorption. Although both Qext and PL(90°) are identifiers of the refractive index of the surrounding medium, the spectral of PL(90°) has only a small, linear dependence on nanoparticle size R. This weak dependence makes it experimentally feasible to perform real-time retrievals of both the refractive index of the external medium and the NP size R.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.009157