Loading…

A low-surface energy carbon allotrope: the case for bcc-C6

Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2015-06, Vol.17 (21), p.14083-14087
Main Authors: Yin, Wen-Jin, Chen, Yuan-Ping, Xie, Yue-E, Liu, Li-Min, Zhang, S B
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14087
container_issue 21
container_start_page 14083
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Yin, Wen-Jin
Chen, Yuan-Ping
Xie, Yue-E
Liu, Li-Min
Zhang, S B
description Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.
doi_str_mv 10.1039/c5cp00803d
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1682886015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1682886015</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-dcc9febd9dc36585d9a6d05cd0da4dabaa94af2474abbf6fad4b2ec7474e36d73</originalsourceid><addsrcrecordid>eNo1j01LxDAURYMgzji68QdIlm6qSfPRZnbD4Kgw4EbX5SV50ZG2qUmLzL-34MhdXLgcLhxCbji750yYB6fcwFjNhD8jSy61KAyr5YJc5vzFGOOKiwuyKJWZI9SSrDe0jT9FnlIAhxR7TB9H6iDZ2FNo2zimOOCajp84rxlpiIla54qtviLnAdqM16dekffd49v2udi_Pr1sN_ti4KUeC--cCWi98U5oVStvQHumnGcepAcLYCSEUlYSrA06gJe2RFfNAwrtK7Eid3-_Q4rfE-ax6Q7ZYdtCj3HKDdd1Wdd6dpvR2xM62Q59M6RDB-nY_PuKX-HsVQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682886015</pqid></control><display><type>article</type><title>A low-surface energy carbon allotrope: the case for bcc-C6</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yin, Wen-Jin ; Chen, Yuan-Ping ; Xie, Yue-E ; Liu, Li-Min ; Zhang, S B</creator><creatorcontrib>Yin, Wen-Jin ; Chen, Yuan-Ping ; Xie, Yue-E ; Liu, Li-Min ; Zhang, S B</creatorcontrib><description>Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.</description><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp00803d</identifier><identifier>PMID: 25959535</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2015-06, Vol.17 (21), p.14083-14087</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25959535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Wen-Jin</creatorcontrib><creatorcontrib>Chen, Yuan-Ping</creatorcontrib><creatorcontrib>Xie, Yue-E</creatorcontrib><creatorcontrib>Liu, Li-Min</creatorcontrib><creatorcontrib>Zhang, S B</creatorcontrib><title>A low-surface energy carbon allotrope: the case for bcc-C6</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.</description><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1j01LxDAURYMgzji68QdIlm6qSfPRZnbD4Kgw4EbX5SV50ZG2qUmLzL-34MhdXLgcLhxCbji750yYB6fcwFjNhD8jSy61KAyr5YJc5vzFGOOKiwuyKJWZI9SSrDe0jT9FnlIAhxR7TB9H6iDZ2FNo2zimOOCajp84rxlpiIla54qtviLnAdqM16dekffd49v2udi_Pr1sN_ti4KUeC--cCWi98U5oVStvQHumnGcepAcLYCSEUlYSrA06gJe2RFfNAwrtK7Eid3-_Q4rfE-ax6Q7ZYdtCj3HKDdd1Wdd6dpvR2xM62Q59M6RDB-nY_PuKX-HsVQg</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Yin, Wen-Jin</creator><creator>Chen, Yuan-Ping</creator><creator>Xie, Yue-E</creator><creator>Liu, Li-Min</creator><creator>Zhang, S B</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150607</creationdate><title>A low-surface energy carbon allotrope: the case for bcc-C6</title><author>Yin, Wen-Jin ; Chen, Yuan-Ping ; Xie, Yue-E ; Liu, Li-Min ; Zhang, S B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-dcc9febd9dc36585d9a6d05cd0da4dabaa94af2474abbf6fad4b2ec7474e36d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Wen-Jin</creatorcontrib><creatorcontrib>Chen, Yuan-Ping</creatorcontrib><creatorcontrib>Xie, Yue-E</creatorcontrib><creatorcontrib>Liu, Li-Min</creatorcontrib><creatorcontrib>Zhang, S B</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Wen-Jin</au><au>Chen, Yuan-Ping</au><au>Xie, Yue-E</au><au>Liu, Li-Min</au><au>Zhang, S B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A low-surface energy carbon allotrope: the case for bcc-C6</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-06-07</date><risdate>2015</risdate><volume>17</volume><issue>21</issue><spage>14083</spage><epage>14087</epage><pages>14083-14087</pages><eissn>1463-9084</eissn><abstract>Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.</abstract><cop>England</cop><pmid>25959535</pmid><doi>10.1039/c5cp00803d</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1463-9084
ispartof Physical chemistry chemical physics : PCCP, 2015-06, Vol.17 (21), p.14083-14087
issn 1463-9084
language eng
recordid cdi_proquest_miscellaneous_1682886015
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
title A low-surface energy carbon allotrope: the case for bcc-C6
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20low-surface%20energy%20carbon%20allotrope:%20the%20case%20for%20bcc-C6&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yin,%20Wen-Jin&rft.date=2015-06-07&rft.volume=17&rft.issue=21&rft.spage=14083&rft.epage=14087&rft.pages=14083-14087&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp00803d&rft_dat=%3Cproquest_pubme%3E1682886015%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p126t-dcc9febd9dc36585d9a6d05cd0da4dabaa94af2474abbf6fad4b2ec7474e36d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1682886015&rft_id=info:pmid/25959535&rfr_iscdi=true