Loading…
A low-surface energy carbon allotrope: the case for bcc-C6
Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2015-06, Vol.17 (21), p.14083-14087 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 14087 |
container_issue | 21 |
container_start_page | 14083 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 17 |
creator | Yin, Wen-Jin Chen, Yuan-Ping Xie, Yue-E Liu, Li-Min Zhang, S B |
description | Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%. |
doi_str_mv | 10.1039/c5cp00803d |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1682886015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1682886015</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-dcc9febd9dc36585d9a6d05cd0da4dabaa94af2474abbf6fad4b2ec7474e36d73</originalsourceid><addsrcrecordid>eNo1j01LxDAURYMgzji68QdIlm6qSfPRZnbD4Kgw4EbX5SV50ZG2qUmLzL-34MhdXLgcLhxCbji750yYB6fcwFjNhD8jSy61KAyr5YJc5vzFGOOKiwuyKJWZI9SSrDe0jT9FnlIAhxR7TB9H6iDZ2FNo2zimOOCajp84rxlpiIla54qtviLnAdqM16dekffd49v2udi_Pr1sN_ti4KUeC--cCWi98U5oVStvQHumnGcepAcLYCSEUlYSrA06gJe2RFfNAwrtK7Eid3-_Q4rfE-ax6Q7ZYdtCj3HKDdd1Wdd6dpvR2xM62Q59M6RDB-nY_PuKX-HsVQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682886015</pqid></control><display><type>article</type><title>A low-surface energy carbon allotrope: the case for bcc-C6</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yin, Wen-Jin ; Chen, Yuan-Ping ; Xie, Yue-E ; Liu, Li-Min ; Zhang, S B</creator><creatorcontrib>Yin, Wen-Jin ; Chen, Yuan-Ping ; Xie, Yue-E ; Liu, Li-Min ; Zhang, S B</creatorcontrib><description>Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.</description><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp00803d</identifier><identifier>PMID: 25959535</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2015-06, Vol.17 (21), p.14083-14087</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25959535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Wen-Jin</creatorcontrib><creatorcontrib>Chen, Yuan-Ping</creatorcontrib><creatorcontrib>Xie, Yue-E</creatorcontrib><creatorcontrib>Liu, Li-Min</creatorcontrib><creatorcontrib>Zhang, S B</creatorcontrib><title>A low-surface energy carbon allotrope: the case for bcc-C6</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.</description><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1j01LxDAURYMgzji68QdIlm6qSfPRZnbD4Kgw4EbX5SV50ZG2qUmLzL-34MhdXLgcLhxCbji750yYB6fcwFjNhD8jSy61KAyr5YJc5vzFGOOKiwuyKJWZI9SSrDe0jT9FnlIAhxR7TB9H6iDZ2FNo2zimOOCajp84rxlpiIla54qtviLnAdqM16dekffd49v2udi_Pr1sN_ti4KUeC--cCWi98U5oVStvQHumnGcepAcLYCSEUlYSrA06gJe2RFfNAwrtK7Eid3-_Q4rfE-ax6Q7ZYdtCj3HKDdd1Wdd6dpvR2xM62Q59M6RDB-nY_PuKX-HsVQg</recordid><startdate>20150607</startdate><enddate>20150607</enddate><creator>Yin, Wen-Jin</creator><creator>Chen, Yuan-Ping</creator><creator>Xie, Yue-E</creator><creator>Liu, Li-Min</creator><creator>Zhang, S B</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150607</creationdate><title>A low-surface energy carbon allotrope: the case for bcc-C6</title><author>Yin, Wen-Jin ; Chen, Yuan-Ping ; Xie, Yue-E ; Liu, Li-Min ; Zhang, S B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-dcc9febd9dc36585d9a6d05cd0da4dabaa94af2474abbf6fad4b2ec7474e36d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Wen-Jin</creatorcontrib><creatorcontrib>Chen, Yuan-Ping</creatorcontrib><creatorcontrib>Xie, Yue-E</creatorcontrib><creatorcontrib>Liu, Li-Min</creatorcontrib><creatorcontrib>Zhang, S B</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Wen-Jin</au><au>Chen, Yuan-Ping</au><au>Xie, Yue-E</au><au>Liu, Li-Min</au><au>Zhang, S B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A low-surface energy carbon allotrope: the case for bcc-C6</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-06-07</date><risdate>2015</risdate><volume>17</volume><issue>21</issue><spage>14083</spage><epage>14087</epage><pages>14083-14087</pages><eissn>1463-9084</eissn><abstract>Graphite may be viewed as a low-surface-energy carbon allotrope with little layer-layer interaction. Other low-surface-energy allotropes but with much stronger layer-layer interaction may also exist. Here, we report a first-principles prediction for one of the known carbon allotropes, bcc-C6 (a body centered carbon allotrope with six atoms per primitive unit), that should have exceptionally low-surface energy and little size dependence down to only a couple layer thickness. This unique property may explain the existence of the relatively-high-energy bcc-C6 during growth. The electronic properties of the bcc-C6 thin layers can also be intriguing: the (111), (110), and (001) thin layers have direct band gap, indirect band gap, and metallic character, respectively. The refrained chemical reactivity of the thin layers does not disappear after cleaving, as lithium-doped (Li-doped) 3-layers (111) has a noticeably increased binding energy of H2 molecules with a maximum storage capacity of 10.8 wt%.</abstract><cop>England</cop><pmid>25959535</pmid><doi>10.1039/c5cp00803d</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1463-9084 |
ispartof | Physical chemistry chemical physics : PCCP, 2015-06, Vol.17 (21), p.14083-14087 |
issn | 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1682886015 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
title | A low-surface energy carbon allotrope: the case for bcc-C6 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20low-surface%20energy%20carbon%20allotrope:%20the%20case%20for%20bcc-C6&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yin,%20Wen-Jin&rft.date=2015-06-07&rft.volume=17&rft.issue=21&rft.spage=14083&rft.epage=14087&rft.pages=14083-14087&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp00803d&rft_dat=%3Cproquest_pubme%3E1682886015%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p126t-dcc9febd9dc36585d9a6d05cd0da4dabaa94af2474abbf6fad4b2ec7474e36d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1682886015&rft_id=info:pmid/25959535&rfr_iscdi=true |