Loading…

relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures

Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelec...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2015-05, Vol.99 (10), p.4485-4494
Main Authors: Zhang, Xueqin, Feng, Huajun, Liang, Yuxiang, Zhao, Zhiqing, Long, Yuyang, Fang, Yuan, Wang, Meizhen, Yin, Jun, Shen, Dongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h⁻¹, which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8 %, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1 % more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-014-6357-4