Loading…
Chimeric rabies SADB19-VSVg-pseudotyped lentiviral vectors mediate long-range retrograde transduction from the mouse spinal cord
Lentiviral vectors have proved an effective method to deliver transgenes into the brain; however, they are often hampered by a lack of spread from the site of injection. Modifying the viral envelope with a portion of a rabies envelope glycoprotein can enhance spread in the brain by using long-range...
Saved in:
Published in: | Gene therapy 2015-05, Vol.22 (5), p.357-364 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lentiviral vectors have proved an effective method to deliver transgenes into the brain; however, they are often hampered by a lack of spread from the site of injection. Modifying the viral envelope with a portion of a rabies envelope glycoprotein can enhance spread in the brain by using long-range axon projections to facilitate retrograde transport. In this study, we generated two chimeric envelopes containing the extra-virion and transmembrane domain of rabies SADB19 or CVS-N2c with the intra-virion domain of vesicular stomatitis virus. Viral particles were packaged containing a green fluorescent protein reporter construct under the control of the phosphoglycerokinase promoter. Both vectors produced high-titer particles with successful integration of the glycoproteins into the particle envelope and significant transduction of neurons
in vitro
. Injection of the SADB19 chimeric viral vector into the lumbar spinal cord of adult mice mediated a strong preference for gene transfer to local neurons and axonal terminals, with retrograde transport to neurons in the brainstem, hypothalamus and cerebral cortex. Development of this vector provides a useful means to reliably target select populations of neurons by retrograde targeting. |
---|---|
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/gt.2015.3 |