Loading…
The relation of mixed-layer net community production to phytoplankton community composition in the Southern Ocean
Surface ocean productivity mediates the transfer of carbon to the deep ocean and in the process regulates atmospheric CO2 levels. A common axiom in oceanography is that large phytoplankton contribute disproportionally to the transfer of carbon to the deep ocean because of their greater ability to es...
Saved in:
Published in: | Global biogeochemical cycles 2015-04, Vol.29 (4), p.446-462 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Surface ocean productivity mediates the transfer of carbon to the deep ocean and in the process regulates atmospheric CO2 levels. A common axiom in oceanography is that large phytoplankton contribute disproportionally to the transfer of carbon to the deep ocean because of their greater ability to escape grazing pressure, build biomass, and sink. In the present study, we assessed the relationship of net community production to phytoplankton assemblages and plankton size distribution in the Sub‐Antarctic Zone and northern reaches of the Polar Frontal Zone in the Australian sector of the Southern Ocean. We reanalyzed and synthesized previously published estimates of O2/Ar net community oxygen production (NCP) and triple‐O2 isotopes gross primary oxygen production (GPP) along with microscopic and pigment analyses of the microbial community. Overall, we found that the axiom that large phytoplankton drive carbon export was not supported in this region. Mixed‐layer‐depth‐integrated NCP was correlated to particulate organic carbon (POC) concentration in the mixed layer. While lower NCP/GPP and NCP/POC values were generally associated with communities dominated by smaller plankton size (as would be expected), these communities did not preclude high values for both properties. Vigorous NCP in some regions occurred in the virtual absence of large phytoplankton (and specifically diatoms) and in communities dominated by nanoplankton and picoplankton. We also observed a positive correlation between NCP and the proportion of the phytoplankton community grazed by microheterotrophs, supporting the mediating role of grazers in carbon export. The novel combination of techniques allowed us to determine how NCP relates to upper ocean ecosystem characteristics and may lead to improved models of carbon export.
Key Points
Vigorous NCP in the absence of diatoms
Observed correlation of NCP to POC |
---|---|
ISSN: | 0886-6236 1944-9224 |
DOI: | 10.1002/2014GB004936 |