Loading…
Effect on in vitro cell response of the statistical insertion of N-(2-hydroxypropyl) methacrylamide on linear pro-dendronic polyamine’s gene carriers
[Display omitted] Statistical copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and the dendronic methacrylic monomer 2-(3-(Bis(2-(diethylamino)ethyl)amino)propanamido)ethyl methacrylate (TEDETAMA, derived from N,N,N′,N′-tetraethyldiethylenetriamine, TEDETA), were synthesized through radical c...
Saved in:
Published in: | European journal of pharmaceutics and biopharmaceutics 2015-06, Vol.93, p.303-310 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Statistical copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and the dendronic methacrylic monomer 2-(3-(Bis(2-(diethylamino)ethyl)amino)propanamido)ethyl methacrylate (TEDETAMA, derived from N,N,N′,N′-tetraethyldiethylenetriamine, TEDETA), were synthesized through radical copolymerization and evaluated in vitro as non-viral gene carriers. Three copolymers with nominal molar percentages of HPMA of 25%, 50% and 75% were prepared and studied comparatively to the positive controls poly-TEDETAMA and hyperbranched polyethyleneimine (PEI, 25kDa). Their ability to complex DNA at different N/P molar ratios, from 1/1 up to 8/1, was determined through agarose gel electrophoresis and Dynamic Light Scattering. The resulting complexes (polyplexes) were characterized and evaluated in vitro as possible non-viral gene carriers for Swiss-3T3 fibroblasts, using luciferase as reporter gene and a calcein cytocompatibility assay. All the copolymers, except the one with highest HPMA proportion (75 molar %) at the lowest N/P ratio, condensed DNA to a particle size between 100 and 300nm. The copolymers with 25 and 50 molar % of HPMA displayed higher transfection efficiency and cytocompatibility than the positive controls poly-TEDETAMA and PEI. A higher proportion of HPMA (75 molar %) led to copolymers that displayed very low transfection efficiency, despite their full cytocompatibility even at the highest N/P ratio. These results indicate that the statistical combination of TEDETAMA and HPMA and its fine compositional tuning in the copolymers may fulfill the fine balance of transfection efficiency and cytocompatibility in a superior way to the control poly-TEDETAMA and PEI. |
---|---|
ISSN: | 0939-6411 1873-3441 |
DOI: | 10.1016/j.ejpb.2015.04.014 |