Loading…
Efficient Low-Temperature Transparent Electrocatalytic Layers Based on Graphene Oxide Nanosheets for Dye-Sensitized Solar Cells
Electrocatalytic materials with a porous structure have been fabricated on glass substrates, via high-temperature fabrication, for application as alternatives to platinum in dye-sensitized solar cells (DSCs). Efficient, nonporous, nanometer-thick electrocatalytic layers based on graphene oxide (GO)...
Saved in:
Published in: | ACS applied materials & interfaces 2015-05, Vol.7 (20), p.10863-10871 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrocatalytic materials with a porous structure have been fabricated on glass substrates, via high-temperature fabrication, for application as alternatives to platinum in dye-sensitized solar cells (DSCs). Efficient, nonporous, nanometer-thick electrocatalytic layers based on graphene oxide (GO) nanosheets were prepared on plastic substrates using electrochemical control at low temperatures of ≤100 °C. Single-layer, oxygen-rich GO nanosheets prepared on indium tin oxide (ITO) substrates were electrochemically deoxygenated in acidic medium within a narrow scan range in order to obtain marginally reduced GO at minimum expense of the oxygen groups. The resulting electrochemically reduced GO (E-RGO) had a high density of residual alcohol groups with high electrocatalytic activity toward the positively charged cobalt-complex redox mediators used in DSCs. The ultrathin, alcohol-rich E-RGO layer on ITO-coated poly(ethylene terephthalate) was successfully applied as a lightweight, low-temperature counter electrode with an extremely high optical transmittance of ∼97.7% at 550 nm. A cobalt(II/III)-mediated DSC employing the highly transparent, alcohol-rich E-RGO electrode exhibited a photovoltaic power conversion efficiency of 5.07%. This is superior to that obtained with conventionally reduced GO using hydrazine (3.94%) and even similar to that obtained with platinum (5.10%). This is the first report of a highly transparent planar electrocatalytic layer based on carbonaceous materials fabricated on ITO plastics for application in DSCs. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b01938 |