Loading…

Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates

Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2O3) composites and pure PDMS. The substrates were prep...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part A 2015-07, Vol.103 (7), p.2203-2213
Main Authors: Ataollahi, Forough, Pramanik, Sumit, Moradi, Ali, Dalilottojari, Adel, Pingguan‐Murphy, Belinda, Wan Abas, Wan Abu Bakar, Abu Osman, Noor Azuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2O3) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1′‐dioctadecyl‐1,3,3,3′,3′‐tetramethylindocarbocyanine perchlorate‐acetylated LDL (Dil‐Ac‐LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2O3) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103: 2203–2213, 2015.
ISSN:1549-3296
1552-4965
DOI:10.1002/jbm.a.35186