Loading…

Interaction of Globular Plasma Proteins with Water-Soluble CdSe Quantum Dots

The interactions between water‐soluble semiconductor quantum dots [hydrophilic 3‐mercaptopropionic acid (MPA)‐coated CdSe] and three globular plasma proteins, namely, bovine serum albumin (BSA), β‐lactoglobulin (β‐Lg) and human serum albumin (HSA), are investigated. Acidic residues of protein molecu...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2015-06, Vol.16 (8), p.1777-1786
Main Authors: Pathak, Jyotsana, Rawat, Kamla, Sanwlani, Shilpa, Bohidar, H. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interactions between water‐soluble semiconductor quantum dots [hydrophilic 3‐mercaptopropionic acid (MPA)‐coated CdSe] and three globular plasma proteins, namely, bovine serum albumin (BSA), β‐lactoglobulin (β‐Lg) and human serum albumin (HSA), are investigated. Acidic residues of protein molecules form electrostatic interactions with these quantum dots (QDs). To determine the stoichiometry of proteins bound to QDs, we used dynamic light scattering (DLS) and zeta potential techniques. Fluorescence resonance energy transfer (FRET) experiments revealed energy transfer from tryptophan residues in the proteins to the QD particles. Quenching of the intrinsic fluorescence of protein molecules was noticed during this binding process (hierarchy HSA
ISSN:1439-4235
1439-7641
DOI:10.1002/cphc.201402629