Loading…
HL-2M Divertor Geometry Exploration with SOLPS5.0
One of the critical issues to be solved for HL-2M is the power and particle exhaust. Divertor target plate geometry strongly influences the plasma profiles by controlling the neutral recycling pattern, which has in turn a strong effect on the symmetry and stability of the divertor plasma and finally...
Saved in:
Published in: | Plasma science & technology 2013-12, Vol.15 (12), p.1184-1188, Article 1184 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the critical issues to be solved for HL-2M is the power and particle exhaust. Divertor target plate geometry strongly influences the plasma profiles by controlling the neutral recycling pattern, which has in turn a strong effect on the symmetry and stability of the divertor plasma and finally on the whole edge region. The numerical simulation software SOLPS5.0 Pack- age is used to design and explore the divertor target plates for HL-2M. We choose two divertor geometries, and assess the heat flux on the target plates and first wall, then further discuss the di- vertor plasma parameters, and how private flux baffling affects both neutral recirculation pattern and pumping efficiency. |
---|---|
ISSN: | 1009-0630 |
DOI: | 10.1088/1009-0630/15/12/04 |