Loading…
Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry
► Plasma density increases in magnetic bottle configuration due to magnetized electrons drifting in crossed E×B fields, promoting electronneutral collision and as a result, the ion current density increases. ► Plasma immersion ion implantation in crossed E×B fields provides significant changes in su...
Saved in:
Published in: | Applied surface science 2012-10, Vol.258 (24), p.9564-9569 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-276a8f16a579e441523d6fdb02a4d0b821e253b6ab40cc7c8601f144361163c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-276a8f16a579e441523d6fdb02a4d0b821e253b6ab40cc7c8601f144361163c3 |
container_end_page | 9569 |
container_issue | 24 |
container_start_page | 9564 |
container_title | Applied surface science |
container_volume | 258 |
creator | Pillaca, E.J.D.M. Ueda, M. Kostov, K.G. Reuther, H. |
description | ► Plasma density increases in magnetic bottle configuration due to magnetized electrons drifting in crossed E×B fields, promoting electronneutral collision and as a result, the ion current density increases. ► Plasma immersion ion implantation in crossed E×B fields provides significant changes in surface properties of the samples. ► The plasma immersion ion implantation process with magnetic field has increased the dose and the depth of implantation by a factor of 1.5 in the case of sample implanted at high energy.
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E×B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E×B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. |
doi_str_mv | 10.1016/j.apsusc.2012.05.132 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685766024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433212009919</els_id><sourcerecordid>1685766024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-276a8f16a579e441523d6fdb02a4d0b821e253b6ab40cc7c8601f144361163c3</originalsourceid><addsrcrecordid>eNp9kEuL2zAQx8XSQtO036AHXRZ6sVcvy86lUMK-YKGH5q7K8jgoWFaqkQv59lU2YY97GIaZ-c3rT8g3zmrOuL471PaIC7paMC5q1tRcihuy4l0rq6bp1AeyKtimUlKKT-Qz4oEVsFRX5M_vvAwnGkd6nCwGS30IkNDHmb5aKOk52_wazDlS9JN3JcClx5xsBrqgn_c02P0M2TsafEox0T3EADmdvpCPo50Qvl79muwe7nfbp-rl1-Pz9udL5RRvciVabbuRa9u0G1AlJeSgx6FnwqqB9Z3gIBrZa9sr5lzrOs34yJWSmnMtnVyT75exxxT_LoDZBI8OpnI9xAUN113Tas2EKqi6oC5FxASjOSYfbDoZzsxZT3MwFz3NWU_DGlP0LG231w0WnZ3GZGfn8a1XaNFprnXhflw4KN_-85AMOg-zg8EncNkM0b-_6D-biI6t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685766024</pqid></control><display><type>article</type><title>Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Pillaca, E.J.D.M. ; Ueda, M. ; Kostov, K.G. ; Reuther, H.</creator><creatorcontrib>Pillaca, E.J.D.M. ; Ueda, M. ; Kostov, K.G. ; Reuther, H.</creatorcontrib><description>► Plasma density increases in magnetic bottle configuration due to magnetized electrons drifting in crossed E×B fields, promoting electronneutral collision and as a result, the ion current density increases. ► Plasma immersion ion implantation in crossed E×B fields provides significant changes in surface properties of the samples. ► The plasma immersion ion implantation process with magnetic field has increased the dose and the depth of implantation by a factor of 1.5 in the case of sample implanted at high energy.
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E×B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E×B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2012.05.132</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crossed E × B fields ; Drift ; Electric potential ; Exact sciences and technology ; Immersion ; Implantation ; Ion implantation ; Magnetic fields ; Magnetic mirror geometry ; Physics ; Plasma immersion ion implantation with magnetic field ; Silicon ; Silicon substrates ; Surface properties ; Wettability</subject><ispartof>Applied surface science, 2012-10, Vol.258 (24), p.9564-9569</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-276a8f16a579e441523d6fdb02a4d0b821e253b6ab40cc7c8601f144361163c3</citedby><cites>FETCH-LOGICAL-c415t-276a8f16a579e441523d6fdb02a4d0b821e253b6ab40cc7c8601f144361163c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26286166$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pillaca, E.J.D.M.</creatorcontrib><creatorcontrib>Ueda, M.</creatorcontrib><creatorcontrib>Kostov, K.G.</creatorcontrib><creatorcontrib>Reuther, H.</creatorcontrib><title>Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry</title><title>Applied surface science</title><description>► Plasma density increases in magnetic bottle configuration due to magnetized electrons drifting in crossed E×B fields, promoting electronneutral collision and as a result, the ion current density increases. ► Plasma immersion ion implantation in crossed E×B fields provides significant changes in surface properties of the samples. ► The plasma immersion ion implantation process with magnetic field has increased the dose and the depth of implantation by a factor of 1.5 in the case of sample implanted at high energy.
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E×B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E×B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crossed E × B fields</subject><subject>Drift</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Immersion</subject><subject>Implantation</subject><subject>Ion implantation</subject><subject>Magnetic fields</subject><subject>Magnetic mirror geometry</subject><subject>Physics</subject><subject>Plasma immersion ion implantation with magnetic field</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Surface properties</subject><subject>Wettability</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEuL2zAQx8XSQtO036AHXRZ6sVcvy86lUMK-YKGH5q7K8jgoWFaqkQv59lU2YY97GIaZ-c3rT8g3zmrOuL471PaIC7paMC5q1tRcihuy4l0rq6bp1AeyKtimUlKKT-Qz4oEVsFRX5M_vvAwnGkd6nCwGS30IkNDHmb5aKOk52_wazDlS9JN3JcClx5xsBrqgn_c02P0M2TsafEox0T3EADmdvpCPo50Qvl79muwe7nfbp-rl1-Pz9udL5RRvciVabbuRa9u0G1AlJeSgx6FnwqqB9Z3gIBrZa9sr5lzrOs34yJWSmnMtnVyT75exxxT_LoDZBI8OpnI9xAUN113Tas2EKqi6oC5FxASjOSYfbDoZzsxZT3MwFz3NWU_DGlP0LG231w0WnZ3GZGfn8a1XaNFprnXhflw4KN_-85AMOg-zg8EncNkM0b-_6D-biI6t</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Pillaca, E.J.D.M.</creator><creator>Ueda, M.</creator><creator>Kostov, K.G.</creator><creator>Reuther, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121001</creationdate><title>Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry</title><author>Pillaca, E.J.D.M. ; Ueda, M. ; Kostov, K.G. ; Reuther, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-276a8f16a579e441523d6fdb02a4d0b821e253b6ab40cc7c8601f144361163c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crossed E × B fields</topic><topic>Drift</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Immersion</topic><topic>Implantation</topic><topic>Ion implantation</topic><topic>Magnetic fields</topic><topic>Magnetic mirror geometry</topic><topic>Physics</topic><topic>Plasma immersion ion implantation with magnetic field</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Surface properties</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillaca, E.J.D.M.</creatorcontrib><creatorcontrib>Ueda, M.</creatorcontrib><creatorcontrib>Kostov, K.G.</creatorcontrib><creatorcontrib>Reuther, H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillaca, E.J.D.M.</au><au>Ueda, M.</au><au>Kostov, K.G.</au><au>Reuther, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry</atitle><jtitle>Applied surface science</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>258</volume><issue>24</issue><spage>9564</spage><epage>9569</epage><pages>9564-9569</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>► Plasma density increases in magnetic bottle configuration due to magnetized electrons drifting in crossed E×B fields, promoting electronneutral collision and as a result, the ion current density increases. ► Plasma immersion ion implantation in crossed E×B fields provides significant changes in surface properties of the samples. ► The plasma immersion ion implantation process with magnetic field has increased the dose and the depth of implantation by a factor of 1.5 in the case of sample implanted at high energy.
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E×B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E×B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2012.05.132</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2012-10, Vol.258 (24), p.9564-9569 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685766024 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crossed E × B fields Drift Electric potential Exact sciences and technology Immersion Implantation Ion implantation Magnetic fields Magnetic mirror geometry Physics Plasma immersion ion implantation with magnetic field Silicon Silicon substrates Surface properties Wettability |
title | Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20plasma%20immersion%20ion%20implantation%20into%20silicon%20substrate%20using%20magnetic%20mirror%20geometry&rft.jtitle=Applied%20surface%20science&rft.au=Pillaca,%20E.J.D.M.&rft.date=2012-10-01&rft.volume=258&rft.issue=24&rft.spage=9564&rft.epage=9569&rft.pages=9564-9569&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2012.05.132&rft_dat=%3Cproquest_cross%3E1685766024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-276a8f16a579e441523d6fdb02a4d0b821e253b6ab40cc7c8601f144361163c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685766024&rft_id=info:pmid/&rfr_iscdi=true |