Loading…

Evidence for Dark States in the Temperature Dependent Recombination Dynamics of InGaN/GaN Quantum Wells

The photoluminescence (PL) transients in two highly efficient blue and cyan emitting InGaN/GaN multiple quantum well structures are studied as a function of recombination energy, temperature and excitation density. Based on the form and spectral dependence of the PL decay, the emission is attributed...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2013-08, Vol.52 (8), p.08JL12-08JL12-5
Main Authors: Badcock, Tom J, Dawson, Phil, Oliver, Rachel A, Kappers, Menno J, Humphreys, Colin J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-c58001db04b38381784304f505366758e4031fd9831ee35f0768ea1087e261c63
cites cdi_FETCH-LOGICAL-c373t-c58001db04b38381784304f505366758e4031fd9831ee35f0768ea1087e261c63
container_end_page 08JL12-5
container_issue 8
container_start_page 08JL12
container_title Japanese Journal of Applied Physics
container_volume 52
creator Badcock, Tom J
Dawson, Phil
Oliver, Rachel A
Kappers, Menno J
Humphreys, Colin J
description The photoluminescence (PL) transients in two highly efficient blue and cyan emitting InGaN/GaN multiple quantum well structures are studied as a function of recombination energy, temperature and excitation density. Based on the form and spectral dependence of the PL decay, the emission is attributed to the recombination of independently localised electron hole pairs throughout the investigated temperature range (10--300 K). To account for the variation of the decay time across the PL linewidth, the $T = 10$ K detection energies are purposely shifted according to the predicted change in InGaN bandgap with increasing temperature. In this way, we monitor the temperature dependence of the recombination lifetime in separate subsets of localised states. We suggest that the observed reduction in decay rate with increasing temperature above ${\sim}80$ K is caused by the thermally induced occupation of optically inactive "dark" states. The reduced temperature sensitivity of the PL decay time under high levels of excitation is consistent with the nature of the dark states being other, higher energy (more weakly) localised states within the distribution.
doi_str_mv 10.7567/JJAP.52.08JL12
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685771518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685771518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-c58001db04b38381784304f505366758e4031fd9831ee35f0768ea1087e261c63</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtXzzmKsNtks_nosbRaW4qfFY8h3c5qtJtdk6zQf--W9e5heBl43mF4ELqkJJVcyNFyOXlMeZYStVzR7AgNKMtlkhPBj9GAkIwm-TjLTtFZCJ_dKnhOB-j95sduwRWAy9rjmfFf-CWaCAFbh-MH4DVUDXgTWw94Bg24jo74GYq62lhnoq0dnu2dqWwRcF3ihZub-1E3-Kk1LrYVfoPdLpyjk9LsAlz85RC93t6sp3fJ6mG-mE5WScEki0nBFSF0uyH5himmqFQ5I3nJCWdCSK4gJ4yW27FiFIDxkkihwFCiJGSCFoIN0VV_t_H1dwsh6sqGovvAOKjboKlQXErKqerQtEcLX4fgodSNt5Xxe02JPhjVB6OaZ7o32hWu-4JtTPMf_Avpe3TK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685771518</pqid></control><display><type>article</type><title>Evidence for Dark States in the Temperature Dependent Recombination Dynamics of InGaN/GaN Quantum Wells</title><source>IOPscience extra</source><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Badcock, Tom J ; Dawson, Phil ; Oliver, Rachel A ; Kappers, Menno J ; Humphreys, Colin J</creator><creatorcontrib>Badcock, Tom J ; Dawson, Phil ; Oliver, Rachel A ; Kappers, Menno J ; Humphreys, Colin J</creatorcontrib><description>The photoluminescence (PL) transients in two highly efficient blue and cyan emitting InGaN/GaN multiple quantum well structures are studied as a function of recombination energy, temperature and excitation density. Based on the form and spectral dependence of the PL decay, the emission is attributed to the recombination of independently localised electron hole pairs throughout the investigated temperature range (10--300 K). To account for the variation of the decay time across the PL linewidth, the $T = 10$ K detection energies are purposely shifted according to the predicted change in InGaN bandgap with increasing temperature. In this way, we monitor the temperature dependence of the recombination lifetime in separate subsets of localised states. We suggest that the observed reduction in decay rate with increasing temperature above ${\sim}80$ K is caused by the thermally induced occupation of optically inactive "dark" states. The reduced temperature sensitivity of the PL decay time under high levels of excitation is consistent with the nature of the dark states being other, higher energy (more weakly) localised states within the distribution.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.52.08JL12</identifier><language>eng</language><publisher>The Japan Society of Applied Physics</publisher><subject>Decay ; Density ; Excitation ; Gallium nitrides ; Indium gallium nitrides ; Monitors ; Quantum wells ; Reduction ; Temperature dependence</subject><ispartof>Japanese Journal of Applied Physics, 2013-08, Vol.52 (8), p.08JL12-08JL12-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-c58001db04b38381784304f505366758e4031fd9831ee35f0768ea1087e261c63</citedby><cites>FETCH-LOGICAL-c373t-c58001db04b38381784304f505366758e4031fd9831ee35f0768ea1087e261c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Badcock, Tom J</creatorcontrib><creatorcontrib>Dawson, Phil</creatorcontrib><creatorcontrib>Oliver, Rachel A</creatorcontrib><creatorcontrib>Kappers, Menno J</creatorcontrib><creatorcontrib>Humphreys, Colin J</creatorcontrib><title>Evidence for Dark States in the Temperature Dependent Recombination Dynamics of InGaN/GaN Quantum Wells</title><title>Japanese Journal of Applied Physics</title><description>The photoluminescence (PL) transients in two highly efficient blue and cyan emitting InGaN/GaN multiple quantum well structures are studied as a function of recombination energy, temperature and excitation density. Based on the form and spectral dependence of the PL decay, the emission is attributed to the recombination of independently localised electron hole pairs throughout the investigated temperature range (10--300 K). To account for the variation of the decay time across the PL linewidth, the $T = 10$ K detection energies are purposely shifted according to the predicted change in InGaN bandgap with increasing temperature. In this way, we monitor the temperature dependence of the recombination lifetime in separate subsets of localised states. We suggest that the observed reduction in decay rate with increasing temperature above ${\sim}80$ K is caused by the thermally induced occupation of optically inactive "dark" states. The reduced temperature sensitivity of the PL decay time under high levels of excitation is consistent with the nature of the dark states being other, higher energy (more weakly) localised states within the distribution.</description><subject>Decay</subject><subject>Density</subject><subject>Excitation</subject><subject>Gallium nitrides</subject><subject>Indium gallium nitrides</subject><subject>Monitors</subject><subject>Quantum wells</subject><subject>Reduction</subject><subject>Temperature dependence</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtXzzmKsNtks_nosbRaW4qfFY8h3c5qtJtdk6zQf--W9e5heBl43mF4ELqkJJVcyNFyOXlMeZYStVzR7AgNKMtlkhPBj9GAkIwm-TjLTtFZCJ_dKnhOB-j95sduwRWAy9rjmfFf-CWaCAFbh-MH4DVUDXgTWw94Bg24jo74GYq62lhnoq0dnu2dqWwRcF3ihZub-1E3-Kk1LrYVfoPdLpyjk9LsAlz85RC93t6sp3fJ6mG-mE5WScEki0nBFSF0uyH5himmqFQ5I3nJCWdCSK4gJ4yW27FiFIDxkkihwFCiJGSCFoIN0VV_t_H1dwsh6sqGovvAOKjboKlQXErKqerQtEcLX4fgodSNt5Xxe02JPhjVB6OaZ7o32hWu-4JtTPMf_Avpe3TK</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Badcock, Tom J</creator><creator>Dawson, Phil</creator><creator>Oliver, Rachel A</creator><creator>Kappers, Menno J</creator><creator>Humphreys, Colin J</creator><general>The Japan Society of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Evidence for Dark States in the Temperature Dependent Recombination Dynamics of InGaN/GaN Quantum Wells</title><author>Badcock, Tom J ; Dawson, Phil ; Oliver, Rachel A ; Kappers, Menno J ; Humphreys, Colin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-c58001db04b38381784304f505366758e4031fd9831ee35f0768ea1087e261c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Decay</topic><topic>Density</topic><topic>Excitation</topic><topic>Gallium nitrides</topic><topic>Indium gallium nitrides</topic><topic>Monitors</topic><topic>Quantum wells</topic><topic>Reduction</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badcock, Tom J</creatorcontrib><creatorcontrib>Dawson, Phil</creatorcontrib><creatorcontrib>Oliver, Rachel A</creatorcontrib><creatorcontrib>Kappers, Menno J</creatorcontrib><creatorcontrib>Humphreys, Colin J</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badcock, Tom J</au><au>Dawson, Phil</au><au>Oliver, Rachel A</au><au>Kappers, Menno J</au><au>Humphreys, Colin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Dark States in the Temperature Dependent Recombination Dynamics of InGaN/GaN Quantum Wells</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>52</volume><issue>8</issue><spage>08JL12</spage><epage>08JL12-5</epage><pages>08JL12-08JL12-5</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><abstract>The photoluminescence (PL) transients in two highly efficient blue and cyan emitting InGaN/GaN multiple quantum well structures are studied as a function of recombination energy, temperature and excitation density. Based on the form and spectral dependence of the PL decay, the emission is attributed to the recombination of independently localised electron hole pairs throughout the investigated temperature range (10--300 K). To account for the variation of the decay time across the PL linewidth, the $T = 10$ K detection energies are purposely shifted according to the predicted change in InGaN bandgap with increasing temperature. In this way, we monitor the temperature dependence of the recombination lifetime in separate subsets of localised states. We suggest that the observed reduction in decay rate with increasing temperature above ${\sim}80$ K is caused by the thermally induced occupation of optically inactive "dark" states. The reduced temperature sensitivity of the PL decay time under high levels of excitation is consistent with the nature of the dark states being other, higher energy (more weakly) localised states within the distribution.</abstract><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.52.08JL12</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2013-08, Vol.52 (8), p.08JL12-08JL12-5
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_miscellaneous_1685771518
source IOPscience extra; Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Decay
Density
Excitation
Gallium nitrides
Indium gallium nitrides
Monitors
Quantum wells
Reduction
Temperature dependence
title Evidence for Dark States in the Temperature Dependent Recombination Dynamics of InGaN/GaN Quantum Wells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Dark%20States%20in%20the%20Temperature%20Dependent%20Recombination%20Dynamics%20of%20InGaN/GaN%20Quantum%20Wells&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Badcock,%20Tom%20J&rft.date=2013-08-01&rft.volume=52&rft.issue=8&rft.spage=08JL12&rft.epage=08JL12-5&rft.pages=08JL12-08JL12-5&rft.issn=0021-4922&rft.eissn=1347-4065&rft_id=info:doi/10.7567/JJAP.52.08JL12&rft_dat=%3Cproquest_cross%3E1685771518%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-c58001db04b38381784304f505366758e4031fd9831ee35f0768ea1087e261c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685771518&rft_id=info:pmid/&rfr_iscdi=true