Loading…
Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating
► The coating showed the water contact angle of 165° and the water sliding angle of 6°. ► The hierarchical structure with the low surface energy leads to surface superhydrophobicity. ► We demonstrated a simple yet efficient approach to preparing superhydrophobic surface. Superhydrophobic coating has...
Saved in:
Published in: | Applied surface science 2012-10, Vol.258 (24), p.9859-9863 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ► The coating showed the water contact angle of 165° and the water sliding angle of 6°. ► The hierarchical structure with the low surface energy leads to surface superhydrophobicity. ► We demonstrated a simple yet efficient approach to preparing superhydrophobic surface.
Superhydrophobic coating has been fabricated on the glass substrates with modified SiO2 sol and polytetrafluoroethylene emulsion through a sol–gel process. SiO2 sol was modified with γ-glycidoxypropyl trimethoxysilane. The coatings were characterized by water contact angle measurement, Scanning electron microscope, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy and thermal synthetic analysis. The experimental results show that coatings exhibited superhydrophobic and heat-resistant property with a water average contact angle of 156° and sliding angle of 6°, coating has a rough surface with both micro- and nanoscale structures, γ-glycidoxypropyl trimethoxysilane enhanced the hydrophobicity of the coatings. Low surface energy of polymer and special structure of the coatings were responsible for the hydrophobic of the surfaces. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2012.06.043 |