Loading…

Noncooperative Day-Ahead Bidding Strategies for Demand-Side Expected Cost Minimization With Real-Time Adjustments: A GNEP Approach

The envisioned smart grid aims at improving the interaction between the supply- and the demand-side of the electricity network, creating unprecedented possibilities for optimizing the energy usage at different levels of the grid. In this paper, we propose a distributed demand-side management (DSM) m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2014-05, Vol.62 (9), p.2397-2412
Main Authors: Atzeni, Italo, Ordonez, Luis G., Scutari, Gesualdo, Palomar, Daniel P., Fonollosa, Javier R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-ed6024a520d25bd5d4b4b2614f9057b4ac52789055980d94171714cb0add7d8d3
cites cdi_FETCH-LOGICAL-c396t-ed6024a520d25bd5d4b4b2614f9057b4ac52789055980d94171714cb0add7d8d3
container_end_page 2412
container_issue 9
container_start_page 2397
container_title IEEE transactions on signal processing
container_volume 62
creator Atzeni, Italo
Ordonez, Luis G.
Scutari, Gesualdo
Palomar, Daniel P.
Fonollosa, Javier R.
description The envisioned smart grid aims at improving the interaction between the supply- and the demand-side of the electricity network, creating unprecedented possibilities for optimizing the energy usage at different levels of the grid. In this paper, we propose a distributed demand-side management (DSM) method intended for smart grid users with load prediction capabilities, who possibly employ dispatchable energy generation and storage devices. These users participate in the day-ahead market and are interested in deriving the bidding, production, and storage strategies that jointly minimize their expected monetary expense. The resulting day-ahead grid optimization is formulated as a generalized Nash equilibrium problem (GNEP), which includes global constraints that couple the users' strategies. Building on the theory of variational inequalities, we study the main properties of the GNEP and devise a distributed, iterative algorithm converging to the variational solutions of the GNEP. Additionally, users can exploit the reduced uncertainty about their energy consumption and renewable generation at the time of dispatch. We thus present a complementary DSM procedure that allows them to perform some unilateral adjustments on their generation and storage strategies so as to reduce the impact of their real-time deviations with respect to the amount of energy negotiated in the day-ahead. Finally, numerical results in realistic scenarios are reported to corroborate the proposed DSM technique.
doi_str_mv 10.1109/TSP.2014.2307835
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685776422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6747393</ieee_id><sourcerecordid>3272367641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-ed6024a520d25bd5d4b4b2614f9057b4ac52789055980d94171714cb0add7d8d3</originalsourceid><addsrcrecordid>eNpdkd2L1DAUxYsouI6-C74ERPClYz6b1rfu7LgK67o4I_oW0uR2J0Pb1KQV10f_cjPOsIKEkBvu7xzu5WTZc4KXhODqzXZzs6SY8CVlWJZMPMjOSMVJjrksHqYaC5aLUn57nD2JcY8TyaviLPt97Qfj_QhBT-4HoAt9l9c70BadO2vdcIs2U2rBrYOIWh_QBfR6sPnGWUDrnyOYCSxa-Tihj25wvfuVfPyAvrpphz6D7vKt6wHVdj_HqYdhim9RjS6v1zeoHsfgtdk9zR61uovw7PQusi_v1tvV-_zq0-WHVX2VG1YVUw62wJRrQbGlorHC8oY3tCC8rbCQDddGUFmmWlQltml1mQ43DdbWSltatsjI0dfE2agABoLRk_La_fscLsWSKsqkwCxpXh81adTvM8RJ9S4a6Do9gJ-jIkUppCw4pQl9-R-693MY0kaKCMJL9tdxkeHTEMHHGKBVY3C9DneKYHUIUqUg1SFIdQoySV6djHU0umuDHoyL9zpaFpgTShL34sg5ALhvF5JLVjH2B_supPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514833750</pqid></control><display><type>article</type><title>Noncooperative Day-Ahead Bidding Strategies for Demand-Side Expected Cost Minimization With Real-Time Adjustments: A GNEP Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Atzeni, Italo ; Ordonez, Luis G. ; Scutari, Gesualdo ; Palomar, Daniel P. ; Fonollosa, Javier R.</creator><creatorcontrib>Atzeni, Italo ; Ordonez, Luis G. ; Scutari, Gesualdo ; Palomar, Daniel P. ; Fonollosa, Javier R.</creatorcontrib><description>The envisioned smart grid aims at improving the interaction between the supply- and the demand-side of the electricity network, creating unprecedented possibilities for optimizing the energy usage at different levels of the grid. In this paper, we propose a distributed demand-side management (DSM) method intended for smart grid users with load prediction capabilities, who possibly employ dispatchable energy generation and storage devices. These users participate in the day-ahead market and are interested in deriving the bidding, production, and storage strategies that jointly minimize their expected monetary expense. The resulting day-ahead grid optimization is formulated as a generalized Nash equilibrium problem (GNEP), which includes global constraints that couple the users' strategies. Building on the theory of variational inequalities, we study the main properties of the GNEP and devise a distributed, iterative algorithm converging to the variational solutions of the GNEP. Additionally, users can exploit the reduced uncertainty about their energy consumption and renewable generation at the time of dispatch. We thus present a complementary DSM procedure that allows them to perform some unilateral adjustments on their generation and storage strategies so as to reduce the impact of their real-time deviations with respect to the amount of energy negotiated in the day-ahead. Finally, numerical results in realistic scenarios are reported to corroborate the proposed DSM technique.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2014.2307835</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aggregates ; Applied sciences ; Construction ; Day-ahead/real-time demand-side management ; Demand-side management (Electric utilities) ; Detection, estimation, filtering, equalization, prediction ; Distributed memory ; Electric utilities ; Energy consumption ; Energy management ; Energy storage ; Energy use ; Enginyeria electrònica ; Exact sciences and technology ; Game theory ; Generalized Nash equilibrium problem ; Information, signal and communications theory ; Jocs, Teoria de ; Mathematical models ; Optimization ; Production ; Proximal decomposition algorithm ; Real-time systems ; Signal and communications theory ; Signal, noise ; Smart grid ; Smart grids ; Smart power grids ; Strategy ; Telecommunications and information theory ; Variational inequality ; Vectors ; Xarxes eléctriques ; Àrees temàtiques de la UPC</subject><ispartof>IEEE transactions on signal processing, 2014-05, Vol.62 (9), p.2397-2412</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-ed6024a520d25bd5d4b4b2614f9057b4ac52789055980d94171714cb0add7d8d3</citedby><cites>FETCH-LOGICAL-c396t-ed6024a520d25bd5d4b4b2614f9057b4ac52789055980d94171714cb0add7d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6747393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28604121$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Atzeni, Italo</creatorcontrib><creatorcontrib>Ordonez, Luis G.</creatorcontrib><creatorcontrib>Scutari, Gesualdo</creatorcontrib><creatorcontrib>Palomar, Daniel P.</creatorcontrib><creatorcontrib>Fonollosa, Javier R.</creatorcontrib><title>Noncooperative Day-Ahead Bidding Strategies for Demand-Side Expected Cost Minimization With Real-Time Adjustments: A GNEP Approach</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The envisioned smart grid aims at improving the interaction between the supply- and the demand-side of the electricity network, creating unprecedented possibilities for optimizing the energy usage at different levels of the grid. In this paper, we propose a distributed demand-side management (DSM) method intended for smart grid users with load prediction capabilities, who possibly employ dispatchable energy generation and storage devices. These users participate in the day-ahead market and are interested in deriving the bidding, production, and storage strategies that jointly minimize their expected monetary expense. The resulting day-ahead grid optimization is formulated as a generalized Nash equilibrium problem (GNEP), which includes global constraints that couple the users' strategies. Building on the theory of variational inequalities, we study the main properties of the GNEP and devise a distributed, iterative algorithm converging to the variational solutions of the GNEP. Additionally, users can exploit the reduced uncertainty about their energy consumption and renewable generation at the time of dispatch. We thus present a complementary DSM procedure that allows them to perform some unilateral adjustments on their generation and storage strategies so as to reduce the impact of their real-time deviations with respect to the amount of energy negotiated in the day-ahead. Finally, numerical results in realistic scenarios are reported to corroborate the proposed DSM technique.</description><subject>Aggregates</subject><subject>Applied sciences</subject><subject>Construction</subject><subject>Day-ahead/real-time demand-side management</subject><subject>Demand-side management (Electric utilities)</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Distributed memory</subject><subject>Electric utilities</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Energy use</subject><subject>Enginyeria electrònica</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Generalized Nash equilibrium problem</subject><subject>Information, signal and communications theory</subject><subject>Jocs, Teoria de</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Production</subject><subject>Proximal decomposition algorithm</subject><subject>Real-time systems</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Smart power grids</subject><subject>Strategy</subject><subject>Telecommunications and information theory</subject><subject>Variational inequality</subject><subject>Vectors</subject><subject>Xarxes eléctriques</subject><subject>Àrees temàtiques de la UPC</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkd2L1DAUxYsouI6-C74ERPClYz6b1rfu7LgK67o4I_oW0uR2J0Pb1KQV10f_cjPOsIKEkBvu7xzu5WTZc4KXhODqzXZzs6SY8CVlWJZMPMjOSMVJjrksHqYaC5aLUn57nD2JcY8TyaviLPt97Qfj_QhBT-4HoAt9l9c70BadO2vdcIs2U2rBrYOIWh_QBfR6sPnGWUDrnyOYCSxa-Tihj25wvfuVfPyAvrpphz6D7vKt6wHVdj_HqYdhim9RjS6v1zeoHsfgtdk9zR61uovw7PQusi_v1tvV-_zq0-WHVX2VG1YVUw62wJRrQbGlorHC8oY3tCC8rbCQDddGUFmmWlQltml1mQ43DdbWSltatsjI0dfE2agABoLRk_La_fscLsWSKsqkwCxpXh81adTvM8RJ9S4a6Do9gJ-jIkUppCw4pQl9-R-693MY0kaKCMJL9tdxkeHTEMHHGKBVY3C9DneKYHUIUqUg1SFIdQoySV6djHU0umuDHoyL9zpaFpgTShL34sg5ALhvF5JLVjH2B_supPg</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Atzeni, Italo</creator><creator>Ordonez, Luis G.</creator><creator>Scutari, Gesualdo</creator><creator>Palomar, Daniel P.</creator><creator>Fonollosa, Javier R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>XX2</scope></search><sort><creationdate>20140501</creationdate><title>Noncooperative Day-Ahead Bidding Strategies for Demand-Side Expected Cost Minimization With Real-Time Adjustments: A GNEP Approach</title><author>Atzeni, Italo ; Ordonez, Luis G. ; Scutari, Gesualdo ; Palomar, Daniel P. ; Fonollosa, Javier R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-ed6024a520d25bd5d4b4b2614f9057b4ac52789055980d94171714cb0add7d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aggregates</topic><topic>Applied sciences</topic><topic>Construction</topic><topic>Day-ahead/real-time demand-side management</topic><topic>Demand-side management (Electric utilities)</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Distributed memory</topic><topic>Electric utilities</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Energy use</topic><topic>Enginyeria electrònica</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Generalized Nash equilibrium problem</topic><topic>Information, signal and communications theory</topic><topic>Jocs, Teoria de</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Production</topic><topic>Proximal decomposition algorithm</topic><topic>Real-time systems</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Smart power grids</topic><topic>Strategy</topic><topic>Telecommunications and information theory</topic><topic>Variational inequality</topic><topic>Vectors</topic><topic>Xarxes eléctriques</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atzeni, Italo</creatorcontrib><creatorcontrib>Ordonez, Luis G.</creatorcontrib><creatorcontrib>Scutari, Gesualdo</creatorcontrib><creatorcontrib>Palomar, Daniel P.</creatorcontrib><creatorcontrib>Fonollosa, Javier R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Recercat</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atzeni, Italo</au><au>Ordonez, Luis G.</au><au>Scutari, Gesualdo</au><au>Palomar, Daniel P.</au><au>Fonollosa, Javier R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncooperative Day-Ahead Bidding Strategies for Demand-Side Expected Cost Minimization With Real-Time Adjustments: A GNEP Approach</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>62</volume><issue>9</issue><spage>2397</spage><epage>2412</epage><pages>2397-2412</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The envisioned smart grid aims at improving the interaction between the supply- and the demand-side of the electricity network, creating unprecedented possibilities for optimizing the energy usage at different levels of the grid. In this paper, we propose a distributed demand-side management (DSM) method intended for smart grid users with load prediction capabilities, who possibly employ dispatchable energy generation and storage devices. These users participate in the day-ahead market and are interested in deriving the bidding, production, and storage strategies that jointly minimize their expected monetary expense. The resulting day-ahead grid optimization is formulated as a generalized Nash equilibrium problem (GNEP), which includes global constraints that couple the users' strategies. Building on the theory of variational inequalities, we study the main properties of the GNEP and devise a distributed, iterative algorithm converging to the variational solutions of the GNEP. Additionally, users can exploit the reduced uncertainty about their energy consumption and renewable generation at the time of dispatch. We thus present a complementary DSM procedure that allows them to perform some unilateral adjustments on their generation and storage strategies so as to reduce the impact of their real-time deviations with respect to the amount of energy negotiated in the day-ahead. Finally, numerical results in realistic scenarios are reported to corroborate the proposed DSM technique.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2014.2307835</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2014-05, Vol.62 (9), p.2397-2412
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1685776422
source IEEE Electronic Library (IEL) Journals
subjects Aggregates
Applied sciences
Construction
Day-ahead/real-time demand-side management
Demand-side management (Electric utilities)
Detection, estimation, filtering, equalization, prediction
Distributed memory
Electric utilities
Energy consumption
Energy management
Energy storage
Energy use
Enginyeria electrònica
Exact sciences and technology
Game theory
Generalized Nash equilibrium problem
Information, signal and communications theory
Jocs, Teoria de
Mathematical models
Optimization
Production
Proximal decomposition algorithm
Real-time systems
Signal and communications theory
Signal, noise
Smart grid
Smart grids
Smart power grids
Strategy
Telecommunications and information theory
Variational inequality
Vectors
Xarxes eléctriques
Àrees temàtiques de la UPC
title Noncooperative Day-Ahead Bidding Strategies for Demand-Side Expected Cost Minimization With Real-Time Adjustments: A GNEP Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncooperative%20Day-Ahead%20Bidding%20Strategies%20for%20Demand-Side%20Expected%20Cost%20Minimization%20With%20Real-Time%20Adjustments:%20A%20GNEP%20Approach&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Atzeni,%20Italo&rft.date=2014-05-01&rft.volume=62&rft.issue=9&rft.spage=2397&rft.epage=2412&rft.pages=2397-2412&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2014.2307835&rft_dat=%3Cproquest_pasca%3E3272367641%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-ed6024a520d25bd5d4b4b2614f9057b4ac52789055980d94171714cb0add7d8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1514833750&rft_id=info:pmid/&rft_ieee_id=6747393&rfr_iscdi=true