Loading…

Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012)

Pan evaporation (Eₚ) is an important indicator of water and energy and the decline of Eₚhas been reported in many regions over the last decades. The climate and Eₚare dependent on each other. In this study, the temporal trends of Eₚand main Eₚdrivers, namely mean air temperature (Tₐ), wind speed (u)...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes 2015-04, Vol.29 (9), p.2164-2177
Main Authors: Xie, Hong, Zhu, Xuan, Yuan, Dao‐Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4486-367aa576c9f60c7bfbd22749c288be8728d06e4fece05c2019a1bda39d416e4c3
cites cdi_FETCH-LOGICAL-c4486-367aa576c9f60c7bfbd22749c288be8728d06e4fece05c2019a1bda39d416e4c3
container_end_page 2177
container_issue 9
container_start_page 2164
container_title Hydrological processes
container_volume 29
creator Xie, Hong
Zhu, Xuan
Yuan, Dao‐Yang
description Pan evaporation (Eₚ) is an important indicator of water and energy and the decline of Eₚhas been reported in many regions over the last decades. The climate and Eₚare dependent on each other. In this study, the temporal trends of Eₚand main Eₚdrivers, namely mean air temperature (Tₐ), wind speed (u), global solar radiation (Rₛ), net long‐wave radiation(Rₙₗ) and vapour pressure deficit (D) from 1970 to 2012, were calculated on the basis of 26 meteorological stations on the Tibetan Plateau. The arithmetic average of Eₚfrom 26 stations decreased with the rate of −11.91 mm a⁻²; the trends of Rₛ, Rₙₗ, Tₐ, u and D were −1.434 w m⁻² decade⁻¹, 0.2511 w m⁻² decade⁻¹, 0.3590°C decade⁻¹, −0.2376 m s⁻¹ decade⁻¹and 9.523 Pa decade⁻¹, respectively. The diffuse irradiance is an essential parameter to model Eₚand quantify the contribution of climatic factors to changing Eₚ. 60 724 observations of Rₛand diffuse solar irradiance (Rd) from seven of the 26 stations were used to develop the correlation between the diffuse fraction (Rd/Rₛ), and the clearness index (Rₛ/Rₒ). On the basis of the estimation of the diffuse component of Rₛand climatic data, we modified the PenPan model to estimate Chinese micro‐pan evaporation (Eₚ) and assess the attribution of Eₚdynamics using partial derivatives. The results showed that there was a good agreement between the observed and calculated daily Eₚvalues. The observed decrease in Eₚwas mostly due to declining wind speed (−13.7 mm a⁻²) with some contributions from decreasing solar irradiance (−3.1 mm a⁻²); and the increase of temperature had a large positive effect (4.55 mm a⁻²) in total whilst the increase of Rₙₗhad insignificant effect (0.35 mm a⁻²) on Eₚrates. The change of Eₚis the net result of all the climatic variables. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/hyp.10356
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685790457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685790457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4486-367aa576c9f60c7bfbd22749c288be8728d06e4fece05c2019a1bda39d416e4c3</originalsourceid><addsrcrecordid>eNqN0c1O3DAQB3CrolIX6KFP0Ei9wCFl7PjzWKEClZC6UuHAyZ04zq5RNlnspGhvvANvyJPU3W0vSFScPLZ-85fGQ8gHCp8pADtZbta5qIR8Q2YUjCkpaLFHZqC1KCVo9Y7sp3QLABw0zMjPOfaF_4XrIeIYhr5YDY3vutAvCuybwi2xX2wv4xhDPW0J9thtUkhFrselL65C7cccM-9w9DgVR9QoeHp4ZEDZ8SF522KX_Pu_5wG5Pvt6dXpRXn4__3b65bJ0nGtZVlIhCiWdaSU4Vbd1w5jixjGta68V0w1Iz1vvPAiXkw3SusHKNJzmd1cdkKNd7joOd5NPo12F5PIo2PthSpZKLZQBLtQrqJIV16rSmX56Rm-HKeb5k2XKUOCSSfk_lbOYyXFMZHW8Uy4OKUXf2nUMK4wbS8H-WZ7Ny7Pb5WV7srP3ofObl6G9uJn_6_i462hxsLiIIdnrH_mfRPYgKgXVb84cokg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672976325</pqid></control><display><type>article</type><title>Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012)</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Xie, Hong ; Zhu, Xuan ; Yuan, Dao‐Yang</creator><creatorcontrib>Xie, Hong ; Zhu, Xuan ; Yuan, Dao‐Yang</creatorcontrib><description>Pan evaporation (Eₚ) is an important indicator of water and energy and the decline of Eₚhas been reported in many regions over the last decades. The climate and Eₚare dependent on each other. In this study, the temporal trends of Eₚand main Eₚdrivers, namely mean air temperature (Tₐ), wind speed (u), global solar radiation (Rₛ), net long‐wave radiation(Rₙₗ) and vapour pressure deficit (D) from 1970 to 2012, were calculated on the basis of 26 meteorological stations on the Tibetan Plateau. The arithmetic average of Eₚfrom 26 stations decreased with the rate of −11.91 mm a⁻²; the trends of Rₛ, Rₙₗ, Tₐ, u and D were −1.434 w m⁻² decade⁻¹, 0.2511 w m⁻² decade⁻¹, 0.3590°C decade⁻¹, −0.2376 m s⁻¹ decade⁻¹and 9.523 Pa decade⁻¹, respectively. The diffuse irradiance is an essential parameter to model Eₚand quantify the contribution of climatic factors to changing Eₚ. 60 724 observations of Rₛand diffuse solar irradiance (Rd) from seven of the 26 stations were used to develop the correlation between the diffuse fraction (Rd/Rₛ), and the clearness index (Rₛ/Rₒ). On the basis of the estimation of the diffuse component of Rₛand climatic data, we modified the PenPan model to estimate Chinese micro‐pan evaporation (Eₚ) and assess the attribution of Eₚdynamics using partial derivatives. The results showed that there was a good agreement between the observed and calculated daily Eₚvalues. The observed decrease in Eₚwas mostly due to declining wind speed (−13.7 mm a⁻²) with some contributions from decreasing solar irradiance (−3.1 mm a⁻²); and the increase of temperature had a large positive effect (4.55 mm a⁻²) in total whilst the increase of Rₙₗhad insignificant effect (0.35 mm a⁻²) on Eₚrates. The change of Eₚis the net result of all the climatic variables. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.10356</identifier><language>eng</language><publisher>Chichester: Wiley</publisher><subject>Air temperature ; Clearness index ; Climate change ; climatic change ; Climatic data ; climatic factors ; Diffusion ; energy ; Evaporation ; hydrology ; Irradiance ; light intensity ; Mathematical models ; Pan evaporation ; Radiation ; Solar irradiance ; Solar radiation ; Stations ; Tantalum ; Temperature effects ; Tibetan Plateau ; Trends ; Vapor pressure ; Vapour pressure ; Weather stations ; Wind ; Wind speed</subject><ispartof>Hydrological processes, 2015-04, Vol.29 (9), p.2164-2177</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4486-367aa576c9f60c7bfbd22749c288be8728d06e4fece05c2019a1bda39d416e4c3</citedby><cites>FETCH-LOGICAL-c4486-367aa576c9f60c7bfbd22749c288be8728d06e4fece05c2019a1bda39d416e4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xie, Hong</creatorcontrib><creatorcontrib>Zhu, Xuan</creatorcontrib><creatorcontrib>Yuan, Dao‐Yang</creatorcontrib><title>Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012)</title><title>Hydrological processes</title><description>Pan evaporation (Eₚ) is an important indicator of water and energy and the decline of Eₚhas been reported in many regions over the last decades. The climate and Eₚare dependent on each other. In this study, the temporal trends of Eₚand main Eₚdrivers, namely mean air temperature (Tₐ), wind speed (u), global solar radiation (Rₛ), net long‐wave radiation(Rₙₗ) and vapour pressure deficit (D) from 1970 to 2012, were calculated on the basis of 26 meteorological stations on the Tibetan Plateau. The arithmetic average of Eₚfrom 26 stations decreased with the rate of −11.91 mm a⁻²; the trends of Rₛ, Rₙₗ, Tₐ, u and D were −1.434 w m⁻² decade⁻¹, 0.2511 w m⁻² decade⁻¹, 0.3590°C decade⁻¹, −0.2376 m s⁻¹ decade⁻¹and 9.523 Pa decade⁻¹, respectively. The diffuse irradiance is an essential parameter to model Eₚand quantify the contribution of climatic factors to changing Eₚ. 60 724 observations of Rₛand diffuse solar irradiance (Rd) from seven of the 26 stations were used to develop the correlation between the diffuse fraction (Rd/Rₛ), and the clearness index (Rₛ/Rₒ). On the basis of the estimation of the diffuse component of Rₛand climatic data, we modified the PenPan model to estimate Chinese micro‐pan evaporation (Eₚ) and assess the attribution of Eₚdynamics using partial derivatives. The results showed that there was a good agreement between the observed and calculated daily Eₚvalues. The observed decrease in Eₚwas mostly due to declining wind speed (−13.7 mm a⁻²) with some contributions from decreasing solar irradiance (−3.1 mm a⁻²); and the increase of temperature had a large positive effect (4.55 mm a⁻²) in total whilst the increase of Rₙₗhad insignificant effect (0.35 mm a⁻²) on Eₚrates. The change of Eₚis the net result of all the climatic variables. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Air temperature</subject><subject>Clearness index</subject><subject>Climate change</subject><subject>climatic change</subject><subject>Climatic data</subject><subject>climatic factors</subject><subject>Diffusion</subject><subject>energy</subject><subject>Evaporation</subject><subject>hydrology</subject><subject>Irradiance</subject><subject>light intensity</subject><subject>Mathematical models</subject><subject>Pan evaporation</subject><subject>Radiation</subject><subject>Solar irradiance</subject><subject>Solar radiation</subject><subject>Stations</subject><subject>Tantalum</subject><subject>Temperature effects</subject><subject>Tibetan Plateau</subject><subject>Trends</subject><subject>Vapor pressure</subject><subject>Vapour pressure</subject><subject>Weather stations</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0c1O3DAQB3CrolIX6KFP0Ei9wCFl7PjzWKEClZC6UuHAyZ04zq5RNlnspGhvvANvyJPU3W0vSFScPLZ-85fGQ8gHCp8pADtZbta5qIR8Q2YUjCkpaLFHZqC1KCVo9Y7sp3QLABw0zMjPOfaF_4XrIeIYhr5YDY3vutAvCuybwi2xX2wv4xhDPW0J9thtUkhFrselL65C7cccM-9w9DgVR9QoeHp4ZEDZ8SF522KX_Pu_5wG5Pvt6dXpRXn4__3b65bJ0nGtZVlIhCiWdaSU4Vbd1w5jixjGta68V0w1Iz1vvPAiXkw3SusHKNJzmd1cdkKNd7joOd5NPo12F5PIo2PthSpZKLZQBLtQrqJIV16rSmX56Rm-HKeb5k2XKUOCSSfk_lbOYyXFMZHW8Uy4OKUXf2nUMK4wbS8H-WZ7Ny7Pb5WV7srP3ofObl6G9uJn_6_i462hxsLiIIdnrH_mfRPYgKgXVb84cokg</recordid><startdate>20150430</startdate><enddate>20150430</enddate><creator>Xie, Hong</creator><creator>Zhu, Xuan</creator><creator>Yuan, Dao‐Yang</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>7U6</scope><scope>7SU</scope></search><sort><creationdate>20150430</creationdate><title>Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012)</title><author>Xie, Hong ; Zhu, Xuan ; Yuan, Dao‐Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4486-367aa576c9f60c7bfbd22749c288be8728d06e4fece05c2019a1bda39d416e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air temperature</topic><topic>Clearness index</topic><topic>Climate change</topic><topic>climatic change</topic><topic>Climatic data</topic><topic>climatic factors</topic><topic>Diffusion</topic><topic>energy</topic><topic>Evaporation</topic><topic>hydrology</topic><topic>Irradiance</topic><topic>light intensity</topic><topic>Mathematical models</topic><topic>Pan evaporation</topic><topic>Radiation</topic><topic>Solar irradiance</topic><topic>Solar radiation</topic><topic>Stations</topic><topic>Tantalum</topic><topic>Temperature effects</topic><topic>Tibetan Plateau</topic><topic>Trends</topic><topic>Vapor pressure</topic><topic>Vapour pressure</topic><topic>Weather stations</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hong</creatorcontrib><creatorcontrib>Zhu, Xuan</creatorcontrib><creatorcontrib>Yuan, Dao‐Yang</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Engineering Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Hong</au><au>Zhu, Xuan</au><au>Yuan, Dao‐Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012)</atitle><jtitle>Hydrological processes</jtitle><date>2015-04-30</date><risdate>2015</risdate><volume>29</volume><issue>9</issue><spage>2164</spage><epage>2177</epage><pages>2164-2177</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>Pan evaporation (Eₚ) is an important indicator of water and energy and the decline of Eₚhas been reported in many regions over the last decades. The climate and Eₚare dependent on each other. In this study, the temporal trends of Eₚand main Eₚdrivers, namely mean air temperature (Tₐ), wind speed (u), global solar radiation (Rₛ), net long‐wave radiation(Rₙₗ) and vapour pressure deficit (D) from 1970 to 2012, were calculated on the basis of 26 meteorological stations on the Tibetan Plateau. The arithmetic average of Eₚfrom 26 stations decreased with the rate of −11.91 mm a⁻²; the trends of Rₛ, Rₙₗ, Tₐ, u and D were −1.434 w m⁻² decade⁻¹, 0.2511 w m⁻² decade⁻¹, 0.3590°C decade⁻¹, −0.2376 m s⁻¹ decade⁻¹and 9.523 Pa decade⁻¹, respectively. The diffuse irradiance is an essential parameter to model Eₚand quantify the contribution of climatic factors to changing Eₚ. 60 724 observations of Rₛand diffuse solar irradiance (Rd) from seven of the 26 stations were used to develop the correlation between the diffuse fraction (Rd/Rₛ), and the clearness index (Rₛ/Rₒ). On the basis of the estimation of the diffuse component of Rₛand climatic data, we modified the PenPan model to estimate Chinese micro‐pan evaporation (Eₚ) and assess the attribution of Eₚdynamics using partial derivatives. The results showed that there was a good agreement between the observed and calculated daily Eₚvalues. The observed decrease in Eₚwas mostly due to declining wind speed (−13.7 mm a⁻²) with some contributions from decreasing solar irradiance (−3.1 mm a⁻²); and the increase of temperature had a large positive effect (4.55 mm a⁻²) in total whilst the increase of Rₙₗhad insignificant effect (0.35 mm a⁻²) on Eₚrates. The change of Eₚis the net result of all the climatic variables. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley</pub><doi>10.1002/hyp.10356</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2015-04, Vol.29 (9), p.2164-2177
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_miscellaneous_1685790457
source Wiley-Blackwell Read & Publish Collection
subjects Air temperature
Clearness index
Climate change
climatic change
Climatic data
climatic factors
Diffusion
energy
Evaporation
hydrology
Irradiance
light intensity
Mathematical models
Pan evaporation
Radiation
Solar irradiance
Solar radiation
Stations
Tantalum
Temperature effects
Tibetan Plateau
Trends
Vapor pressure
Vapour pressure
Weather stations
Wind
Wind speed
title Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pan%20evaporation%20modelling%20and%20changing%20attribution%20analysis%20on%20the%20Tibetan%20Plateau%20(1970%E2%80%932012)&rft.jtitle=Hydrological%20processes&rft.au=Xie,%20Hong&rft.date=2015-04-30&rft.volume=29&rft.issue=9&rft.spage=2164&rft.epage=2177&rft.pages=2164-2177&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.10356&rft_dat=%3Cproquest_cross%3E1685790457%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4486-367aa576c9f60c7bfbd22749c288be8728d06e4fece05c2019a1bda39d416e4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1672976325&rft_id=info:pmid/&rfr_iscdi=true