Loading…
Middle infrared active coherent laser spectrometer for standoff detection of chemicals
Using a quantum cascade laser emitting at 7.85 μm, a middle infrared active coherent laser spectrometer has been developed for the standoff detection of vapor phase chemicals. The first prototype has been tested using diffuse target backscattering at ranges up to ~30 m. Exploiting the continuous fre...
Saved in:
Published in: | Optics letters 2013-10, Vol.38 (19), p.3708-3711 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using a quantum cascade laser emitting at 7.85 μm, a middle infrared active coherent laser spectrometer has been developed for the standoff detection of vapor phase chemicals. The first prototype has been tested using diffuse target backscattering at ranges up to ~30 m. Exploiting the continuous frequency tuning of the laser source, spectra of water vapor, methane, nitrous oxide, and hydrogen peroxide were recorded. A forward model of the instrument was used to perform spectral unmixing and retrieve line-of-sight integrated concentrations and their one-sigma uncertainties. Performance was found to be limited by speckle noise originating from topographic targets. For absorbers with large absorption cross sections such as nitrous oxide (>10(-19) cm(2)·molecule(-1)), normalized detection sensitivities range between 14 and 0.3 ppm·m·Hz(-1/2), depending on the efficiency of the speckle reduction scheme implemented. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.38.003708 |