Loading…

Learning improves service discovery

Summary A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. Th...

Full description

Saved in:
Bibliographic Details
Published in:Concurrency and computation 2015-05, Vol.27 (7), p.1679-1694
Main Authors: Olson, Andrew M., Raje, Rajeev R., Devaraju, Barun, Gallege, Lahiru S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543
cites cdi_FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543
container_end_page 1694
container_issue 7
container_start_page 1679
container_title Concurrency and computation
container_volume 27
creator Olson, Andrew M.
Raje, Rajeev R.
Devaraju, Barun
Gallege, Lahiru S.
description Summary A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. These marketplaces typically provide rudimentary techniques to publish service information and associated matching activities. Such simple matching techniques are typically not suitable to address complex user requirements. Therefore, it is a challenge to discover relevant services, with a high degree of accuracy, out of existing choices. This paper discusses experiments performed on a discovery service whose search techniques incorporate learning profiles to accomplish these complex tasks. The UniFrame Resource Discovery System, which searches for required services, provided an experimental test bed for these experiments. The article describes these techniques and explains their algorithms. Experimental results illustrate the gains in the quality of selected services and reduction in the discovery time using the proposed techniques. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cpe.3323
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685794477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685794477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK6CP6HgxUvXSdKkzVHKugoFPeg5pOlUIv0ycVf67826oicvM8PwMPPyEHJJYUUB2I2dcMU540dkQQVnKUieHf_OTJ6SsxDeACgFThfkqkLjBze8Jq6f_LjDkAT0O2cxaVywceHnc3LSmi7gxU9fkpe79XN5n1aPm4fytkotUwVPrShYY5oaLLWCqbZFVRhbN0bKDIqCqjpWWyvLGI_PRQOsVTnkIKTiQmR8Sa4Pd2OQ9y2GD93HCNh1ZsBxGzSVhchVluX5H2r9GILHVk_e9cbPmoLee9DRg957iGh6QD9dh_O_nC6f1t_8F9AWXGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685794477</pqid></control><display><type>article</type><title>Learning improves service discovery</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Olson, Andrew M. ; Raje, Rajeev R. ; Devaraju, Barun ; Gallege, Lahiru S.</creator><creatorcontrib>Olson, Andrew M. ; Raje, Rajeev R. ; Devaraju, Barun ; Gallege, Lahiru S.</creatorcontrib><description>Summary A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. These marketplaces typically provide rudimentary techniques to publish service information and associated matching activities. Such simple matching techniques are typically not suitable to address complex user requirements. Therefore, it is a challenge to discover relevant services, with a high degree of accuracy, out of existing choices. This paper discusses experiments performed on a discovery service whose search techniques incorporate learning profiles to accomplish these complex tasks. The UniFrame Resource Discovery System, which searches for required services, provided an experimental test bed for these experiments. The article describes these techniques and explains their algorithms. Experimental results illustrate the gains in the quality of selected services and reduction in the discovery time using the proposed techniques. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.3323</identifier><language>eng</language><subject>Algorithms ; Architecture (computers) ; Concurrency ; distributed computing ; feedback ; Gain ; Learning ; learning systems ; Matching ; Networks ; quality of service ; search methods ; Searching ; service selection ; specification matching ; Tasks</subject><ispartof>Concurrency and computation, 2015-05, Vol.27 (7), p.1679-1694</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543</citedby><cites>FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Olson, Andrew M.</creatorcontrib><creatorcontrib>Raje, Rajeev R.</creatorcontrib><creatorcontrib>Devaraju, Barun</creatorcontrib><creatorcontrib>Gallege, Lahiru S.</creatorcontrib><title>Learning improves service discovery</title><title>Concurrency and computation</title><description>Summary A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. These marketplaces typically provide rudimentary techniques to publish service information and associated matching activities. Such simple matching techniques are typically not suitable to address complex user requirements. Therefore, it is a challenge to discover relevant services, with a high degree of accuracy, out of existing choices. This paper discusses experiments performed on a discovery service whose search techniques incorporate learning profiles to accomplish these complex tasks. The UniFrame Resource Discovery System, which searches for required services, provided an experimental test bed for these experiments. The article describes these techniques and explains their algorithms. Experimental results illustrate the gains in the quality of selected services and reduction in the discovery time using the proposed techniques. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Architecture (computers)</subject><subject>Concurrency</subject><subject>distributed computing</subject><subject>feedback</subject><subject>Gain</subject><subject>Learning</subject><subject>learning systems</subject><subject>Matching</subject><subject>Networks</subject><subject>quality of service</subject><subject>search methods</subject><subject>Searching</subject><subject>service selection</subject><subject>specification matching</subject><subject>Tasks</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK6CP6HgxUvXSdKkzVHKugoFPeg5pOlUIv0ycVf67826oicvM8PwMPPyEHJJYUUB2I2dcMU540dkQQVnKUieHf_OTJ6SsxDeACgFThfkqkLjBze8Jq6f_LjDkAT0O2cxaVywceHnc3LSmi7gxU9fkpe79XN5n1aPm4fytkotUwVPrShYY5oaLLWCqbZFVRhbN0bKDIqCqjpWWyvLGI_PRQOsVTnkIKTiQmR8Sa4Pd2OQ9y2GD93HCNh1ZsBxGzSVhchVluX5H2r9GILHVk_e9cbPmoLee9DRg957iGh6QD9dh_O_nC6f1t_8F9AWXGk</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Olson, Andrew M.</creator><creator>Raje, Rajeev R.</creator><creator>Devaraju, Barun</creator><creator>Gallege, Lahiru S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>Learning improves service discovery</title><author>Olson, Andrew M. ; Raje, Rajeev R. ; Devaraju, Barun ; Gallege, Lahiru S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Architecture (computers)</topic><topic>Concurrency</topic><topic>distributed computing</topic><topic>feedback</topic><topic>Gain</topic><topic>Learning</topic><topic>learning systems</topic><topic>Matching</topic><topic>Networks</topic><topic>quality of service</topic><topic>search methods</topic><topic>Searching</topic><topic>service selection</topic><topic>specification matching</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olson, Andrew M.</creatorcontrib><creatorcontrib>Raje, Rajeev R.</creatorcontrib><creatorcontrib>Devaraju, Barun</creatorcontrib><creatorcontrib>Gallege, Lahiru S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olson, Andrew M.</au><au>Raje, Rajeev R.</au><au>Devaraju, Barun</au><au>Gallege, Lahiru S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning improves service discovery</atitle><jtitle>Concurrency and computation</jtitle><date>2015-05</date><risdate>2015</risdate><volume>27</volume><issue>7</issue><spage>1679</spage><epage>1694</epage><pages>1679-1694</pages><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. These marketplaces typically provide rudimentary techniques to publish service information and associated matching activities. Such simple matching techniques are typically not suitable to address complex user requirements. Therefore, it is a challenge to discover relevant services, with a high degree of accuracy, out of existing choices. This paper discusses experiments performed on a discovery service whose search techniques incorporate learning profiles to accomplish these complex tasks. The UniFrame Resource Discovery System, which searches for required services, provided an experimental test bed for these experiments. The article describes these techniques and explains their algorithms. Experimental results illustrate the gains in the quality of selected services and reduction in the discovery time using the proposed techniques. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><doi>10.1002/cpe.3323</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2015-05, Vol.27 (7), p.1679-1694
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_miscellaneous_1685794477
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Algorithms
Architecture (computers)
Concurrency
distributed computing
feedback
Gain
Learning
learning systems
Matching
Networks
quality of service
search methods
Searching
service selection
specification matching
Tasks
title Learning improves service discovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20improves%20service%20discovery&rft.jtitle=Concurrency%20and%20computation&rft.au=Olson,%20Andrew%20M.&rft.date=2015-05&rft.volume=27&rft.issue=7&rft.spage=1679&rft.epage=1694&rft.pages=1679-1694&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.3323&rft_dat=%3Cproquest_cross%3E1685794477%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685794477&rft_id=info:pmid/&rfr_iscdi=true