Loading…
Learning improves service discovery
Summary A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. Th...
Saved in:
Published in: | Concurrency and computation 2015-05, Vol.27 (7), p.1679-1694 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543 |
---|---|
cites | cdi_FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543 |
container_end_page | 1694 |
container_issue | 7 |
container_start_page | 1679 |
container_title | Concurrency and computation |
container_volume | 27 |
creator | Olson, Andrew M. Raje, Rajeev R. Devaraju, Barun Gallege, Lahiru S. |
description | Summary
A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. These marketplaces typically provide rudimentary techniques to publish service information and associated matching activities. Such simple matching techniques are typically not suitable to address complex user requirements. Therefore, it is a challenge to discover relevant services, with a high degree of accuracy, out of existing choices. This paper discusses experiments performed on a discovery service whose search techniques incorporate learning profiles to accomplish these complex tasks. The UniFrame Resource Discovery System, which searches for required services, provided an experimental test bed for these experiments. The article describes these techniques and explains their algorithms. Experimental results illustrate the gains in the quality of selected services and reduction in the discovery time using the proposed techniques. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/cpe.3323 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685794477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685794477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK6CP6HgxUvXSdKkzVHKugoFPeg5pOlUIv0ycVf67826oicvM8PwMPPyEHJJYUUB2I2dcMU540dkQQVnKUieHf_OTJ6SsxDeACgFThfkqkLjBze8Jq6f_LjDkAT0O2cxaVywceHnc3LSmi7gxU9fkpe79XN5n1aPm4fytkotUwVPrShYY5oaLLWCqbZFVRhbN0bKDIqCqjpWWyvLGI_PRQOsVTnkIKTiQmR8Sa4Pd2OQ9y2GD93HCNh1ZsBxGzSVhchVluX5H2r9GILHVk_e9cbPmoLee9DRg957iGh6QD9dh_O_nC6f1t_8F9AWXGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685794477</pqid></control><display><type>article</type><title>Learning improves service discovery</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Olson, Andrew M. ; Raje, Rajeev R. ; Devaraju, Barun ; Gallege, Lahiru S.</creator><creatorcontrib>Olson, Andrew M. ; Raje, Rajeev R. ; Devaraju, Barun ; Gallege, Lahiru S.</creatorcontrib><description>Summary
A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. These marketplaces typically provide rudimentary techniques to publish service information and associated matching activities. Such simple matching techniques are typically not suitable to address complex user requirements. Therefore, it is a challenge to discover relevant services, with a high degree of accuracy, out of existing choices. This paper discusses experiments performed on a discovery service whose search techniques incorporate learning profiles to accomplish these complex tasks. The UniFrame Resource Discovery System, which searches for required services, provided an experimental test bed for these experiments. The article describes these techniques and explains their algorithms. Experimental results illustrate the gains in the quality of selected services and reduction in the discovery time using the proposed techniques. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.3323</identifier><language>eng</language><subject>Algorithms ; Architecture (computers) ; Concurrency ; distributed computing ; feedback ; Gain ; Learning ; learning systems ; Matching ; Networks ; quality of service ; search methods ; Searching ; service selection ; specification matching ; Tasks</subject><ispartof>Concurrency and computation, 2015-05, Vol.27 (7), p.1679-1694</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543</citedby><cites>FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Olson, Andrew M.</creatorcontrib><creatorcontrib>Raje, Rajeev R.</creatorcontrib><creatorcontrib>Devaraju, Barun</creatorcontrib><creatorcontrib>Gallege, Lahiru S.</creatorcontrib><title>Learning improves service discovery</title><title>Concurrency and computation</title><description>Summary
A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. These marketplaces typically provide rudimentary techniques to publish service information and associated matching activities. Such simple matching techniques are typically not suitable to address complex user requirements. Therefore, it is a challenge to discover relevant services, with a high degree of accuracy, out of existing choices. This paper discusses experiments performed on a discovery service whose search techniques incorporate learning profiles to accomplish these complex tasks. The UniFrame Resource Discovery System, which searches for required services, provided an experimental test bed for these experiments. The article describes these techniques and explains their algorithms. Experimental results illustrate the gains in the quality of selected services and reduction in the discovery time using the proposed techniques. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Architecture (computers)</subject><subject>Concurrency</subject><subject>distributed computing</subject><subject>feedback</subject><subject>Gain</subject><subject>Learning</subject><subject>learning systems</subject><subject>Matching</subject><subject>Networks</subject><subject>quality of service</subject><subject>search methods</subject><subject>Searching</subject><subject>service selection</subject><subject>specification matching</subject><subject>Tasks</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK6CP6HgxUvXSdKkzVHKugoFPeg5pOlUIv0ycVf67826oicvM8PwMPPyEHJJYUUB2I2dcMU540dkQQVnKUieHf_OTJ6SsxDeACgFThfkqkLjBze8Jq6f_LjDkAT0O2cxaVywceHnc3LSmi7gxU9fkpe79XN5n1aPm4fytkotUwVPrShYY5oaLLWCqbZFVRhbN0bKDIqCqjpWWyvLGI_PRQOsVTnkIKTiQmR8Sa4Pd2OQ9y2GD93HCNh1ZsBxGzSVhchVluX5H2r9GILHVk_e9cbPmoLee9DRg957iGh6QD9dh_O_nC6f1t_8F9AWXGk</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Olson, Andrew M.</creator><creator>Raje, Rajeev R.</creator><creator>Devaraju, Barun</creator><creator>Gallege, Lahiru S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201505</creationdate><title>Learning improves service discovery</title><author>Olson, Andrew M. ; Raje, Rajeev R. ; Devaraju, Barun ; Gallege, Lahiru S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Architecture (computers)</topic><topic>Concurrency</topic><topic>distributed computing</topic><topic>feedback</topic><topic>Gain</topic><topic>Learning</topic><topic>learning systems</topic><topic>Matching</topic><topic>Networks</topic><topic>quality of service</topic><topic>search methods</topic><topic>Searching</topic><topic>service selection</topic><topic>specification matching</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olson, Andrew M.</creatorcontrib><creatorcontrib>Raje, Rajeev R.</creatorcontrib><creatorcontrib>Devaraju, Barun</creatorcontrib><creatorcontrib>Gallege, Lahiru S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olson, Andrew M.</au><au>Raje, Rajeev R.</au><au>Devaraju, Barun</au><au>Gallege, Lahiru S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning improves service discovery</atitle><jtitle>Concurrency and computation</jtitle><date>2015-05</date><risdate>2015</risdate><volume>27</volume><issue>7</issue><spage>1679</spage><epage>1694</epage><pages>1679-1694</pages><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
A distributed system of services assembled according to a service‐oriented architecture requires an efficient mechanism to discover appropriate services deployed over a network. The recent emergence of many service marketplaces makes the case for the existence of such a discovery service. These marketplaces typically provide rudimentary techniques to publish service information and associated matching activities. Such simple matching techniques are typically not suitable to address complex user requirements. Therefore, it is a challenge to discover relevant services, with a high degree of accuracy, out of existing choices. This paper discusses experiments performed on a discovery service whose search techniques incorporate learning profiles to accomplish these complex tasks. The UniFrame Resource Discovery System, which searches for required services, provided an experimental test bed for these experiments. The article describes these techniques and explains their algorithms. Experimental results illustrate the gains in the quality of selected services and reduction in the discovery time using the proposed techniques. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><doi>10.1002/cpe.3323</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2015-05, Vol.27 (7), p.1679-1694 |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_miscellaneous_1685794477 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Algorithms Architecture (computers) Concurrency distributed computing feedback Gain Learning learning systems Matching Networks quality of service search methods Searching service selection specification matching Tasks |
title | Learning improves service discovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20improves%20service%20discovery&rft.jtitle=Concurrency%20and%20computation&rft.au=Olson,%20Andrew%20M.&rft.date=2015-05&rft.volume=27&rft.issue=7&rft.spage=1679&rft.epage=1694&rft.pages=1679-1694&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.3323&rft_dat=%3Cproquest_cross%3E1685794477%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2983-c582dadb0c1c529ffe98acbda66408819b088cb9c2231035d02f9707056935543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685794477&rft_id=info:pmid/&rfr_iscdi=true |