Loading…

In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus

Reliable cerebrospinal fluid (CSF) draining methods are needed to treat hydrocephalus, a chronic debilitating brain disorder. Current shunt implant treatments are characterized by high failure rates that are to some extent attributed to their length and multiple components. The designed valve, made...

Full description

Saved in:
Bibliographic Details
Published in:Annals of biomedical engineering 2015-03, Vol.43 (3), p.603-615
Main Authors: Schwerdt, Helen N., Amjad, Usamma, Appel, Jennie, Elhadi, Ali M., Lei, Ting, Preul, Mark C., Bristol, Ruth E., Chae, Junseok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-6c29c593fcaf385afe4b99f648da0404568fd5dd74b6cf2f4c4b2ee954f308183
cites cdi_FETCH-LOGICAL-c551t-6c29c593fcaf385afe4b99f648da0404568fd5dd74b6cf2f4c4b2ee954f308183
container_end_page 615
container_issue 3
container_start_page 603
container_title Annals of biomedical engineering
container_volume 43
creator Schwerdt, Helen N.
Amjad, Usamma
Appel, Jennie
Elhadi, Ali M.
Lei, Ting
Preul, Mark C.
Bristol, Ruth E.
Chae, Junseok
description Reliable cerebrospinal fluid (CSF) draining methods are needed to treat hydrocephalus, a chronic debilitating brain disorder. Current shunt implant treatments are characterized by high failure rates that are to some extent attributed to their length and multiple components. The designed valve, made of hydrogel, steers away from such protracted schemes and intends to provide a direct substitute for faulty arachnoid granulations, the brain’s natural CSF draining valves, and restore CSF draining operations within the cranium. The valve relies on innate hydrogel swelling phenomena to strengthen reverse flow sealing at idle and negative pressures thereby alleviating common valve failure mechanisms. In vitro measurements display operation in range of natural CSF draining (cracking pressure, P T  ~ 1–110 mmH 2 O and outflow hydraulic resistance, R h  ~ 24–152 mmH 2 O/mL/min), with negligible reverse flow leakage (flow, Q O  > −10 µL/min). Hydrodynamic measurements and over-time tests under physically relevant conditions further demonstrate the valve’s operationally-reproducible properties and strengthen its validity for use as a chronic implant.
doi_str_mv 10.1007/s10439-015-1291-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1685796911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685796911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-6c29c593fcaf385afe4b99f648da0404568fd5dd74b6cf2f4c4b2ee954f308183</originalsourceid><addsrcrecordid>eNqN0U1LHTEUBuAgLXpr-wO6kUA3Lpw2mXxMsixiVbDYhXUbcpOTNjKTuU1mxNtfby5jSxEKrrLIc97k8CL0npKPlJDuU6GEM90QKhraato87KEVFR1rtFTyFVoRokkjteQH6E0pd4RQqpjYRwdtRR2VbIX8ZcK3ccojvtj6PPptskN0J_gm21QipOkE2-Tx9T3kKQ6Av0EOYx5scoDHgC3-GlO005zjb_D41vb3gCtY0hxsftp-Lm_R62D7Au-ezkP0_cvZzelFc3V9fnn6-apxQtCpka7VTmgWnA1MCRuAr7UOkitvCSdcSBW88L7ja-lCG7jj6xZACx4YUXW1Q3S85G7y-GuGMpkhFgd9bxOMczFUKtFpqSl9Ae0kq7_i_AVUdowrpVilH57Ru3HOqe68U4ruyiFV0UW5PJaSIZhNjoPNW0OJ2RVrlmJNLdbsijUPdeboKXleD-D_TvxpsoJ2AaVepR-Q_3n6v6mPNd-thg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668115730</pqid></control><display><type>article</type><title>In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus</title><source>Springer Link</source><creator>Schwerdt, Helen N. ; Amjad, Usamma ; Appel, Jennie ; Elhadi, Ali M. ; Lei, Ting ; Preul, Mark C. ; Bristol, Ruth E. ; Chae, Junseok</creator><creatorcontrib>Schwerdt, Helen N. ; Amjad, Usamma ; Appel, Jennie ; Elhadi, Ali M. ; Lei, Ting ; Preul, Mark C. ; Bristol, Ruth E. ; Chae, Junseok</creatorcontrib><description>Reliable cerebrospinal fluid (CSF) draining methods are needed to treat hydrocephalus, a chronic debilitating brain disorder. Current shunt implant treatments are characterized by high failure rates that are to some extent attributed to their length and multiple components. The designed valve, made of hydrogel, steers away from such protracted schemes and intends to provide a direct substitute for faulty arachnoid granulations, the brain’s natural CSF draining valves, and restore CSF draining operations within the cranium. The valve relies on innate hydrogel swelling phenomena to strengthen reverse flow sealing at idle and negative pressures thereby alleviating common valve failure mechanisms. In vitro measurements display operation in range of natural CSF draining (cracking pressure, P T  ~ 1–110 mmH 2 O and outflow hydraulic resistance, R h  ~ 24–152 mmH 2 O/mL/min), with negligible reverse flow leakage (flow, Q O  &gt; −10 µL/min). Hydrodynamic measurements and over-time tests under physically relevant conditions further demonstrate the valve’s operationally-reproducible properties and strengthen its validity for use as a chronic implant.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-015-1291-x</identifier><identifier>PMID: 25737163</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Cerebrospinal Fluid ; Classical Mechanics ; Drainage ; Equipment Design ; Fluid dynamics ; Fluid flow ; Humans ; Hydrocephalus - therapy ; Hydrodynamics ; Hydrogels ; Hydrogels - therapeutic use ; In vitro testing ; Intracranial Pressure ; Miniaturization - instrumentation ; Surgical implants ; Valves</subject><ispartof>Annals of biomedical engineering, 2015-03, Vol.43 (3), p.603-615</ispartof><rights>Biomedical Engineering Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-6c29c593fcaf385afe4b99f648da0404568fd5dd74b6cf2f4c4b2ee954f308183</citedby><cites>FETCH-LOGICAL-c551t-6c29c593fcaf385afe4b99f648da0404568fd5dd74b6cf2f4c4b2ee954f308183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25737163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwerdt, Helen N.</creatorcontrib><creatorcontrib>Amjad, Usamma</creatorcontrib><creatorcontrib>Appel, Jennie</creatorcontrib><creatorcontrib>Elhadi, Ali M.</creatorcontrib><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Preul, Mark C.</creatorcontrib><creatorcontrib>Bristol, Ruth E.</creatorcontrib><creatorcontrib>Chae, Junseok</creatorcontrib><title>In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Reliable cerebrospinal fluid (CSF) draining methods are needed to treat hydrocephalus, a chronic debilitating brain disorder. Current shunt implant treatments are characterized by high failure rates that are to some extent attributed to their length and multiple components. The designed valve, made of hydrogel, steers away from such protracted schemes and intends to provide a direct substitute for faulty arachnoid granulations, the brain’s natural CSF draining valves, and restore CSF draining operations within the cranium. The valve relies on innate hydrogel swelling phenomena to strengthen reverse flow sealing at idle and negative pressures thereby alleviating common valve failure mechanisms. In vitro measurements display operation in range of natural CSF draining (cracking pressure, P T  ~ 1–110 mmH 2 O and outflow hydraulic resistance, R h  ~ 24–152 mmH 2 O/mL/min), with negligible reverse flow leakage (flow, Q O  &gt; −10 µL/min). Hydrodynamic measurements and over-time tests under physically relevant conditions further demonstrate the valve’s operationally-reproducible properties and strengthen its validity for use as a chronic implant.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Cerebrospinal Fluid</subject><subject>Classical Mechanics</subject><subject>Drainage</subject><subject>Equipment Design</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Humans</subject><subject>Hydrocephalus - therapy</subject><subject>Hydrodynamics</subject><subject>Hydrogels</subject><subject>Hydrogels - therapeutic use</subject><subject>In vitro testing</subject><subject>Intracranial Pressure</subject><subject>Miniaturization - instrumentation</subject><subject>Surgical implants</subject><subject>Valves</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LHTEUBuAgLXpr-wO6kUA3Lpw2mXxMsixiVbDYhXUbcpOTNjKTuU1mxNtfby5jSxEKrrLIc97k8CL0npKPlJDuU6GEM90QKhraato87KEVFR1rtFTyFVoRokkjteQH6E0pd4RQqpjYRwdtRR2VbIX8ZcK3ccojvtj6PPptskN0J_gm21QipOkE2-Tx9T3kKQ6Av0EOYx5scoDHgC3-GlO005zjb_D41vb3gCtY0hxsftp-Lm_R62D7Au-ezkP0_cvZzelFc3V9fnn6-apxQtCpka7VTmgWnA1MCRuAr7UOkitvCSdcSBW88L7ja-lCG7jj6xZACx4YUXW1Q3S85G7y-GuGMpkhFgd9bxOMczFUKtFpqSl9Ae0kq7_i_AVUdowrpVilH57Ru3HOqe68U4ruyiFV0UW5PJaSIZhNjoPNW0OJ2RVrlmJNLdbsijUPdeboKXleD-D_TvxpsoJ2AaVepR-Q_3n6v6mPNd-thg</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Schwerdt, Helen N.</creator><creator>Amjad, Usamma</creator><creator>Appel, Jennie</creator><creator>Elhadi, Ali M.</creator><creator>Lei, Ting</creator><creator>Preul, Mark C.</creator><creator>Bristol, Ruth E.</creator><creator>Chae, Junseok</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20150301</creationdate><title>In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus</title><author>Schwerdt, Helen N. ; Amjad, Usamma ; Appel, Jennie ; Elhadi, Ali M. ; Lei, Ting ; Preul, Mark C. ; Bristol, Ruth E. ; Chae, Junseok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-6c29c593fcaf385afe4b99f648da0404568fd5dd74b6cf2f4c4b2ee954f308183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Cerebrospinal Fluid</topic><topic>Classical Mechanics</topic><topic>Drainage</topic><topic>Equipment Design</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Humans</topic><topic>Hydrocephalus - therapy</topic><topic>Hydrodynamics</topic><topic>Hydrogels</topic><topic>Hydrogels - therapeutic use</topic><topic>In vitro testing</topic><topic>Intracranial Pressure</topic><topic>Miniaturization - instrumentation</topic><topic>Surgical implants</topic><topic>Valves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwerdt, Helen N.</creatorcontrib><creatorcontrib>Amjad, Usamma</creatorcontrib><creatorcontrib>Appel, Jennie</creatorcontrib><creatorcontrib>Elhadi, Ali M.</creatorcontrib><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Preul, Mark C.</creatorcontrib><creatorcontrib>Bristol, Ruth E.</creatorcontrib><creatorcontrib>Chae, Junseok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwerdt, Helen N.</au><au>Amjad, Usamma</au><au>Appel, Jennie</au><au>Elhadi, Ali M.</au><au>Lei, Ting</au><au>Preul, Mark C.</au><au>Bristol, Ruth E.</au><au>Chae, Junseok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>43</volume><issue>3</issue><spage>603</spage><epage>615</epage><pages>603-615</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Reliable cerebrospinal fluid (CSF) draining methods are needed to treat hydrocephalus, a chronic debilitating brain disorder. Current shunt implant treatments are characterized by high failure rates that are to some extent attributed to their length and multiple components. The designed valve, made of hydrogel, steers away from such protracted schemes and intends to provide a direct substitute for faulty arachnoid granulations, the brain’s natural CSF draining valves, and restore CSF draining operations within the cranium. The valve relies on innate hydrogel swelling phenomena to strengthen reverse flow sealing at idle and negative pressures thereby alleviating common valve failure mechanisms. In vitro measurements display operation in range of natural CSF draining (cracking pressure, P T  ~ 1–110 mmH 2 O and outflow hydraulic resistance, R h  ~ 24–152 mmH 2 O/mL/min), with negligible reverse flow leakage (flow, Q O  &gt; −10 µL/min). Hydrodynamic measurements and over-time tests under physically relevant conditions further demonstrate the valve’s operationally-reproducible properties and strengthen its validity for use as a chronic implant.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>25737163</pmid><doi>10.1007/s10439-015-1291-x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2015-03, Vol.43 (3), p.603-615
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_1685796911
source Springer Link
subjects Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Cerebrospinal Fluid
Classical Mechanics
Drainage
Equipment Design
Fluid dynamics
Fluid flow
Humans
Hydrocephalus - therapy
Hydrodynamics
Hydrogels
Hydrogels - therapeutic use
In vitro testing
Intracranial Pressure
Miniaturization - instrumentation
Surgical implants
Valves
title In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Hydrodynamic,%20Transient,%20and%20Overtime%20Performance%20of%20a%20Miniaturized%20Valve%20for%20Hydrocephalus&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Schwerdt,%20Helen%20N.&rft.date=2015-03-01&rft.volume=43&rft.issue=3&rft.spage=603&rft.epage=615&rft.pages=603-615&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-015-1291-x&rft_dat=%3Cproquest_cross%3E1685796911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-6c29c593fcaf385afe4b99f648da0404568fd5dd74b6cf2f4c4b2ee954f308183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1668115730&rft_id=info:pmid/25737163&rfr_iscdi=true