Loading…
Pathways for solar photovoltaics
Solar energy is one of the few renewable, low-carbon resources with both the scalability and the technological maturity to meet ever-growing global demand for electricity. Among solar power technologies, solar photovoltaics (PV) are the most widely deployed, providing 0.87% of the world's elect...
Saved in:
Published in: | Energy & environmental science 2015-01, Vol.8 (4), p.1200-1219 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solar energy is one of the few renewable, low-carbon resources with both the scalability and the technological maturity to meet ever-growing global demand for electricity. Among solar power technologies, solar photovoltaics (PV) are the most widely deployed, providing 0.87% of the world's electricity in 2013 and sustaining a compound annual growth rate in cumulative installed capacity of 43% since 2000. Given the massive scale of deployment needed, this article examines potential limits to PV deployment at the terawatt scale, emphasizing constraints on the use of commodity and PV-critical materials. We propose material complexity as a guiding framework for classifying PV technologies, and we analyze three core themes that focus future research and development: efficiency, materials use, and manufacturing complexity and cost. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/c4ee04073b |