Loading…
Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS
Graphene-based nanocomposites have recently attracted tremendous research interest in the field of catalysis due to their unique optical and electronic properties. However, direct observation of enhanced plasmon-driven catalytic activity of Au nanoparticles (NPs) supported on reduced graphene oxides...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2015-04, Vol.17 (15), p.10176-10181 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene-based nanocomposites have recently attracted tremendous research interest in the field of catalysis due to their unique optical and electronic properties. However, direct observation of enhanced plasmon-driven catalytic activity of Au nanoparticles (NPs) supported on reduced graphene oxides (Au/rGO) has rarely been reported. Herein, based on the reduction from 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB), the catalytic property of Au/rGO nanocomposites was investigated and compared with corresponding Au NP samples with similar size distribution. Our results show that Au/rGO nanocomposites could serve as a good catalytic and analytic platform for plasmon-driven chemical reactions. In addition, systematic comparisons were conducted during power- and time-dependent surface-enhanced Raman scattering (SERS) experiments, which exhibited a lower power threshold and higher catalytic efficiency for Au/rGO as compared to Au NPs toward the reaction. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c5cp00908a |